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Chapter 1IntrodutionSome historyLeibniz had as ideal the following.(1) Create a `universal language' in whih all possible problems an be stated.(2) Find a deision method to solve all the problems stated in the universallanguage.If one restrits oneself to mathematial problems, point (1) of Leibniz' idealis ful�lled by taking some form of set theory formulated in the language of�rst order prediate logi. This was the situation after Frege and Russell (orZermelo).Point (2) of Leibniz' ideal beame an important philosophial question. `Canone solve all problems formulated in the universal language?' It seems not,but it is not lear how to prove that. This question beame known as theEntsheidungsproblem.In 1936 the Entsheidungsproblem was solved in the negative independentlyby Alonzo Churh and Alan Turing. In order to do so, they needed a formali-sation of the intuitive notion of `deidable', or what is equivalent `omputable'.Churh and Turing did this in two di�erent ways by introduing two models ofomputation.(1) Churh (1936) invented a formal system alled the lambda alulus andde�ned the notion of omputable funtion via this system.(2) Turing (1936/7) invented a lass of mahines (later to be alled Turingmahines) and de�ned the notion of omputable funtion via these mahines.Also in 1936 Turing proved that both models are equally strong in the sensethat they de�ne the same lass of omputable funtions (see Turing (1937)).Based on the onept of a Turing mahine are the present day Von Neu-mann omputers. Coneptually these are Turing mahines with random aessregisters. Imperative programming languages suh as Fortran, Pasal eteteraas well as all the assembler languages are based on the way a Turing mahineis instruted: by a sequene of statements.Funtional programming languages, likeMiranda, ML etetera, are based onthe lambda alulus. An early (although somewhat hybrid) example of suh alanguage is Lisp. Redution mahines are spei�ally designed for the exeutionof these funtional languages. 5



6 Introdution to Lambda CalulusRedution and funtional programmingA funtional program onsists of an expression E (representing both the al-gorithm and the input). This expression E is subjet to some rewrite rules.Redution onsists of replaing a part P of E by another expression P 0 aord-ing to the given rewrite rules. In shemati notationE[P ℄! E[P 0℄;provided that P ! P 0 is aording to the rules. This proess of redutionwill be repeated until the resulting expression has no more parts that an berewritten. This so alled normal form E� of the expression E onsists of theoutput of the given funtional program.An example: (7 + 4) � (8 + 5 � 3) ! 11 � (8 + 5 � 3)! 11 � (8 + 15)! 11 � 23! 253:In this example the redution rules onsist of the `tables' of addition and ofmultipliation on the numerals.Also symboli omputations an be done by redution. For example�rst of (sort (append (`dog', `rabbit') (sort ((`mouse', `at'))))) !! �rst of (sort (append (`dog', `rabbit') (`at', `mouse')))! �rst of (sort (`dog', `rabbit', `at', `mouse'))! �rst of (`at', `dog', `mouse', `rabbit')! `at':The neessary rewrite rules for append and sort an be programmed easilyin a few lines. Funtions like append given by some rewrite rules are alledombinators.Redution systems usually satisfy the Churh-Rosser property , whih statesthat the normal form obtained is independent of the order of evaluation ofsubterms. Indeed, the �rst example may be redued as follows:(7 + 4) � (8 + 5 � 3) ! (7 + 4) � (8 + 15)! 11 � (8 + 15)! 11 � 23! 253;or even by evaluating several expressions at the same time:(7 + 4) � (8 + 5 � 3) ! 11 � (8 + 15)! 11 � 23! 253:



Introdution 7Appliation and abstrationThe �rst basi operation of the �-alulus is appliation. The expressionF �Aor FAdenotes the data F onsidered as algorithm applied to the data A onsideredas input. This an be viewed in two ways: either as the proess of omputationFA or as the output of this proess. The �rst view is aptured by the notionof onversion and even better of redution; the seond by the notion of models(semantis).The theory is type-free: it is allowed to onsider expressions like FF , thatis F applied to itself. This will be useful to simulate reursion.The other basi operation is abstration. If M � M [x℄ is an expressionontaining (`depending on') x, then �x:M [x℄ denotes the funtion x 7! M [x℄.Appliation and abstration work together in the following intuitive formula.(�x:2 � x+ 1)3 = 2 � 3 + 1 (= 7):That is, (�x:2 � x + 1)3 denotes the funtion x 7! 2 � x + 1 applied to theargument 3 giving 2�3+1 whih is 7. In general we have (�x:M [x℄)N =M [N ℄.This last equation is preferably written as(�x:M)N =M [x := N ℄; (�)where [x := N ℄ denotes substitution of N for x. It is remarkable that although(�) is the only essential axiom of the �-alulus, the resulting theory is ratherinvolved.Free and bound variablesAbstration is said to bind the free variable x in M . E.g. we say that �x:yxhas x as bound and y as free variable. Substitution [x := N ℄ is only performedin the free ourrenes of x:yx(�x:x)[x := N ℄ � yN(�x:x):In alulus there is a similar variable binding. In R ba f(x; y)dx the variable x isbound and y is free. It does not make sense to substitute 7 for x: R ba f(7; y)d7;but substitution for y makes sense: R ba f(x; 7)dx.For reasons of hygiene it will always be assumed that the bound variablesthat our in a ertain expression are di�erent from the free ones. This an beful�lled by renaming bound variables. E.g. �x:x beomes �y:y. Indeed, theseexpressions at the same way:(�x:x)a = a = (�y:y)aand in fat they denote the same intended algorithm. Therefore expressionsthat di�er only in the names of bound variables are identi�ed.



8 Introdution to Lambda CalulusFuntions of more argumentsFuntions of several arguments an be obtained by iteration of appliation. Theidea is due to Sh�on�nkel (1924) but is often alled urrying , after H.B. Currywho introdued it independently. Intuitively, if f(x; y) depends on two argu-ments, one an de�ne Fx = �y:f(x; y);F = �x:Fx:Then (Fx)y = Fxy = f(x; y): (�)This last equation shows that it is onvenient to use assoiation to the left foriterated appliation:FM1 � � �Mn denotes (��((FM1)M2) � � �Mn):The equation (�) then beomes Fxy = f(x; y):Dually, iterated abstration uses assoiation to the right :�x1 � � � xn:f(x1; : : : ; xn) denotes �x1:(�x2:(� � � (�xn:f(x1; : : : ; xn))��)):Then we have for F de�ned aboveF = �xy:f(x; y)and (�) beomes (�xy:f(x; y))xy = f(x; y):For n arguments we have(�x1 � � � xn:f(x1; � � � ; xn))x1 � � � xn = f(x1; : : : ; xn)by using n times (�). This last equation beomes in onvenient vetor notation(�~x:f [~x℄)~x = f [~x℄;more generally one has (�~x:f [~x℄) ~N = f [ ~N ℄:



Chapter 2ConversionIn this hapter, the �-alulus will be introdued formally.2.1. Definition. The set of �-terms (notation �) is built up from an in�niteset of variables V = fv; v0; v00; : : :g using appliation and (funtion) abstration.x 2 V ) x 2 �;M;N 2 � ) (MN) 2 �;M 2 �; x 2 V ) (�xM) 2 �:In BN-form this isvariable ::= `v' j variable `0'�-term ::= variable j `(' �-term �-term `)' j `(�' variable �-term `)'2.2. Example. The following are �-terms.v0;(v0v);(�v(v0v));((�v(v0v))v00);(((�v(�v0(v0v)))v00)v000):2.3. Convention. (i) x; y; z; : : : denote arbitrary variables; M;N;L; : : : de-note arbitrary �-terms. Outermost parentheses are not written.(ii) M � N denotes that M and N are the same term or an be obtainedfrom eah other by renaming bound variables. E.g.(�xy)z � (�xy)z;(�xx)z � (�yy)z;(�xx)z 6� z;(�xx)z 6� (�xy)z:(iii) We use the abbreviationsFM1 � � �Mn � (��((FM1)M2) � � �Mn)9



10 Introdution to Lambda Calulusand �x1 � � � xn:M � �x1(�x2(� � � (�xn(M))��)):The terms in Example 2.2 now may be written as follows.y;yx;�x:yx;(�x:yx)z;(�xy:yx)zw:Note that �x:yx is (�x(yx)) and not ((�x:y)x).2.4. Definition. (i) The set of free variables of M , notation FV(M), is de-�ned indutively as follows.FV(x) = fxg;FV(MN) = FV(M) [ FV(N);FV(�x:M) = FV(M)� fxg:A variable in M is bound if it is not free. Note that a variable is bound if itours under the sope of a �.(ii) M is a losed �-term (or ombinator) if FV(M) = ;. The set of losed�-terms is denoted by �o.(iii) The result of substituting N for the free ourenes of x in M , notationM [x := N ℄, is de�ned as follows.x[x := N ℄ � N ;y[x := N ℄ � y; if x 6� y;(M1M2)[x := N ℄ � (M1[x := N ℄)(M2[x := N ℄);(�y:M1)[x := N ℄ � �y:(M1[x := N ℄):2.5. Example. Consider the �-term�xy:xyz:Then x and y are bound variables and z is a free variable. The term �xy:xxyis losed.2.6. Variable onvention. If M1; : : : ;Mn our in a ertain mathematialontext (e.g. de�nition, proof), then in these terms all bound variables arehosen to be di�erent from the free variables.Note that in the fourth lause of De�nition 2.4 (iii) it is not needed to say`provided that y 6� x and y =2 FV(N)'. By the variable onvention this is thease.Now we an introdue the �-alulus as formal theory.



Conversion 112.7. Definition. (i) The prinipal axiom sheme of the �-alulus is(�x:M)N =M [x := N ℄ (�)for all M;N 2 �.(ii) There are also the `logial' axioms and rules.Equality: M =M ;M = N ) N =M ;M = N;N = L ) M = L:Compatibility rules: M =M 0 ) MZ =M 0Z;M =M 0 ) ZM = ZM 0;M =M 0 ) �x:M = �x:M 0: (�)(iii) If M = N is provable in the �-alulus, then we sometimes write � `M = N .As a onsequene of the ompatibility rules, one an replae (sub)terms byequal terms in any term ontext:M = N ) � � �M � � � = � � �N � � � :For example, (�y:yy)x = xx, so� ` �x:x((�y:yy)x)x = �x:x(xx)x:2.8. Remark. We have identi�ed terms that di�er only in the names of boundvariables. An alternative is to add to the �-alulus the following axiom sheme�x:M = �y:M [x := y℄; provided that y does not our in M . (�)We prefer our version of the theory in whih the identi�ations are made onsyntati level. These identi�ations are done in our mind and not on paper.For implementations of the �-alulus the mahine has to deal with this soalled �-onversion. A good way of doing this is provided by the name-freenotation of de Bruijn, see Barendregt (1984), Appendix C.2.9. Lemma. � ` (�x1 � � � xn:M)X1 � � �Xn =M [x1 := X1℄ � � � [xn := Xn℄:Proof. By the axiom (�) we have(�x1:M)X1 =M [x1 := X1℄:By indution on n the result follows. �



12 Introdution to Lambda Calulus2.10. Example (Standard ombinators). De�ne the ombinatorsI � �x:x;K � �xy:x;K� � �xy:y;S � �xyz:xz(yz):Then, by Lemma 2.9, we have the following equations.IM = M ;KMN = M ;K�MN = N ;SMNL = ML(NL):Now we an solve simple equations.2.11. Example. 9G 8X GX = XXX (there exists G 2 � suh that for allX 2 � one has � ` GX = XX). Indeed, take G � �x:xxx and we are done.Reursive equations require a speial tehnique. The following result pro-vides one way to represent reursion in the �-alulus.2.12. Fixedpoint Theorem. (i) 8F 9X FX = X. (This means: for allF 2 � there is an X 2 � suh that � ` FX = X.)(ii) There is a �xed point ombinatorY � �f:(�x:f(xx))(�x:f(xx))suh that 8F F (YF ) = YF:Proof. (i) De�ne W � �x:F (xx) and X �WW . ThenX �WW � (�x:F (xx))W = F (WW ) � FX:(ii) By the proof of (i). �2.13. Example. (i) 9G 8X GX = SGX. Indeed,8X GX = SGX ( Gx = SGx( G = �x:SGx( G = (�gx:Sgx)G( G � Y(�gx:Sgx):Note that one an also take G � YS.(ii) 9G 8X GX = GG: take G � Y(�gx:gg). (Can you solve this withoutusing Y?)



Conversion 13In the lambda alulus one an de�ne numerals and represent numeri fun-tions on them.2.14. Definition. (i) F n(M) with F 2 � and n 2 N is de�ned indutively asfollows. F 0(M) � M ;F n+1(M) � F (F n(M)):(ii) The Churh numerals 0; 1; 2; : : : are de�ned byn � �fx:fn(x):2.15. Proposition (J.B. Rosser). De�neA+ � �xypq:xp(ypq);A� � �xyz:x(yz);Aexp � �xy:yx:Then one has for all n;m 2 N(i) A+nm = n+m.(ii) A�nm = n�m.(iii) Aexpnm = (nm), exept for m = 0 (Rosser started ounting from 1).In the proof we need the following.2.16. Lemma. (i) (nx)m(y) = xn�m(y).(ii) (n)m(x) = (nm)(x), for m > 0.Proof. (i) Indution on m. If m = 0, then LHS = y = RHS. Assume (i) isorret for m (Indution Hypothesis: IH). Then(nx)m+1(y) = nx((nx)m(y))= nx(xn�m(y)) by IH,= xn(xn�m(y))� xn+n�m(y)� xn�(m+1)(y):(ii) Indution on m > 0. If m = 1, then LHS � nx � RHS. If (ii) is orretfor m, then (n)m+1(x) = n((n)m(x))= n((nm)(x)) by IH,= �y:((nm)(x))n(y)= �y:xnm�n(y) by (i),= (nm+1)x:



14 Introdution to Lambda CalulusProof of the proposition. (i) Exerise.(ii) Exerise. Use Lemma 2.16 (i).(iii) By Lemma 2.16 (ii) we have for m > 0Aexpnm = mn= �x:(n)m(x)= �x:(nm)x= (nm);sine �x:Mx =M if M � �y:M 0[y℄ and x =2 FV(M). Indeed,�x:Mx � �x:(�y:M 0[y℄)x= �x:M 0[x℄� �y:M 0[y℄� M: �Exerises2.1. (i) Rewrite aording to oÆial syntaxM1 � y(�x:xy(�zw:yz)):(ii) Rewrite aording to the simpli�ed syntaxM2 � �v0(�v00((((�vv)v0)v00)((v00(�v000(v0v000)))v00))):2.2. Prove the following substitution lemma. Let x 6� y and x =2 FV(L). ThenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄:2.3. (i) Prove, using Exerise 2.2,� `M1 =M2 ) � `M1[x := N ℄ =M2[x := N ℄:(ii) Show� `M1 =M2&� ` N1 = N2 ) � `M1[x := N1℄ =M2[x := N2℄:2.4. Prove Proposition 2.15 (i), (ii).2.5. Let B � �xyz:x(yz). SimplifyM � BXY Z, that is �nd a `simple' term N suhthat � `M = N .2.6. Simplify the following terms.(i) M � (�xyz:zyx)aa(�pq:q);(ii) M � (�yz:zy)((�x:xxx)(�x:xxx))(�w:I);(iii) M � SKSKSK.2.7. Show that(i) � ` KI = K�;(ii) � ` SKK = I.2.8. (i) Write down a losed �-term F 2 � suh that for all M;N 2 �FMN =M(NM)N:



Conversion 15(ii) Construt a �-term F suh that for all M;N;L 2 �oFMNL = N(�x:M)(�yz:yLM):2.9. Find losed terms F suh that(i) Fx = xI;(ii) Fxy = xIy.2.10. Find losed terms F suh that(i) Fx = F . This term an be alled the `eater' and is often denoted by K1;(ii) Fx = xF ;(iii) F IKK = FK.2.11. Show 8C[ ; ℄ 9F 8~x F~x = C[F; ~x℄and take another look at the exerises 2.8, 2.9 and 2.10.2.12. Let P;Q 2 �. P and Q are inompatible, notation P ℄ Q, if � extended withP = Q as axiom proves every equation between �-terms, i.e. for all M;N 2 �one has �+ (P = Q) ` M = N . In this ase one says that � + (P = Q) isinonsistent .(i) Prove that for P;Q 2 �P ℄ Q , �+ (P = Q) ` true = false;where true � K, false � K�.(ii) Show that I ℄ K.(iii) Find a �-term F suh that F I = x and FK = y.(iv) Show that K ℄ S.2.13. Write down a grammar in BN-form that generates the �-terms exatly in theway they are written in Convention 2.3.





Chapter 3The Power of LambdaWe have seen that the funtion plus, times and exponentiation on N an berepresented in the �-alulus using Churh's numerals. We will now show thatall omputable (reursive) funtions an be represented in the �-alulus. Inorder to do this we will use �rst a di�erent system of numerals.Truth values and a onditional an be represented in the �-alulus.3.1. Definition. (i) true � K, false � K�.(ii) If B is onsidered as a Boolean, i.e. a term that is either true or false,then if B then P else Qan be represented by BPQ:3.2. Definition (Pairing). For M;N 2 � write[M;N ℄ � �z:if z then M else N (� �z:zMN):Then [M;N ℄true = M;[M;N ℄false = N;and hene [M;N ℄ an serve as an ordered pair.We an use this pairing onstrution for an alternative representation ofnatural numbers due to Barendregt (1976).3.3. Definition. For eah n 2 N, the numeral pnq is de�ned indutively asfollows. p0q � I;pn+ 1q � [false; pnq℄:17



18 Introdution to Lambda Calulus3.4. Lemma (Suessor, predeessor, test for zero). There exist ombinators S+,P�, and Zero suh that S+pnq = pn+ 1q;P�pn+ 1q = pnq;Zerop0q = true;Zeropn+ 1q = false:Proof. Take S+ � �x:[false; x℄;P� � �x:x false;Zero � �x:x true: �3.5. Definition (Lambda de�nability). (i) A numeri funtion is a map' : Np ! Nfor some p. In this ase ' is alled p-ary.(ii) A numeri p-ary funtion ' is alled �-de�nable if for some ombinatorF Fpn1q � � � pnpq = p'(n1; : : : ; np)q (�)for all n1; : : : ; np 2 N. If (�) holds, then ' is said to be �-de�ned by F .3.6. Definition. The initial funtions are the numeri funtions Uni , S+, Zde�ned by Uni (x1; : : : ; xn) = xi; (1 � i � n);S+(n) = n+ 1;Z(n) = 0:Let P(n) be a numeri relation. As usual�m[P (m)℄denotes the least number m suh that P (m) holds if there is suh a number;otherwise it is unde�ned.3.7. Definition. Let A be a lass of numeri funtions.(i) A is losed under omposition if for all ' de�ned by'(~n) = �( 1(~n); : : : ;  m(~n))with �; 1; : : : ;  m 2 A, one has ' 2 A.(ii) A is losed under primitive reursion if for all ' de�ned by'(0; ~n) = �(~n);'(k + 1; ~n) =  ('(k; ~n); k; ~n)with �; 2 A, one has ' 2 A.



The Power of Lambda 19(iii) A is losed under minimalization if for all ' de�ned by'(~n) = �m[�(~n;m) = 0℄with � 2 A suh that 8~n 9m �(~n;m) = 0;one has ' 2 A.3.8. Definition. The lass R of reursive funtions is the smallest lass ofnumeri funtions that ontains all initial funtions and is losed under ompo-sition, primitive reursion and minimalization.So R is an indutively de�ned lass. The proof that all reursive funtionsare �-de�nable is in fat by a orresponding indution argument. The result isoriginally due to Kleene (1936).3.9. Lemma. The initial funtions are �-de�nable.Proof. Take as de�ning termsUni � �x1 � � � xn:xi;S+ � �x:[false; x℄ (see Lemma 3.4)Z � �x:p0q: �3.10. Lemma. The �-de�nable funtions are losed under omposition.Proof. Let �; 1; : : : ;  m be �-de�ned by G;H1; : : : ;Hm respetively. Then'(~n) = �( 1(~n); : : : ;  m(~n))is �-de�ned by F � �~x:G(H1~x) � � � (Hm~x): �As to primitive reursion, let us �rst onsider an example. The additionfuntion an be spei�ed as follows.Add(0; y) = y;Add(x+ 1; y) = 1 + Add(x; y) = S+(Add(x; y)):An intuitive way to ompute Add(m;n) us the following.Test whether m = 0.If yes: give output n;if no: ompute Add(m� 1; n) and give its suessor as output.Therefore we want a term Add suh thatAddxy = if Zerox then y else S+(Add(P�x)y):This equation an be solved using the �xedpoint ombinator: takeAdd � Y(�axy:if Zero x then y else S+(a(P�x)y)):The general ase is treated as follows.



20 Introdution to Lambda Calulus3.11. Lemma. The �-de�nable funtions are losed under primitive reursion.Proof. Let ' be de�ned by'(0; ~n) = �(~n);'(k + 1; ~n) =  ('(k; ~n); k; ~n);where �; are �-de�ned by G;H respetively. Now we want a term F suhthat Fx~y = if Zero x then G~y else H(F (P�x)~y)(P�x)~y� D(F; x; ~y), say.It is suÆient to �nd an F suh thatF = �x~y:D(F; x; ~y)= (�fx~y:D(f; x; ~y))F:Now suh an F an be found by the Fixedpoint Theorem and we are done. �3.12. Lemma. The �-de�nable funtions are losed under minimalization.Proof. Let ' be de�ned by'(~n) = �m[�(~n;m) = 0℄;where � is �-de�ned by G. Again by the Fixedpoint Theorem there is a termH suh that H~xy = if Zero(G~xy) then y else H~x(S+y)= (�h~xy:E(h; ~x; y))H~xy, say.Set F � �~x:H~xp0q. Then F �-de�nes ':Fp~nq = Hp~nqp0q= p0q if Gp~nqp0q = p0q= Hp~nqp1q else= p1q if Gp~nqp1q = p0q= Hp~nqp2q else= p2q if . . .= : : : �3.13. Theorem. All reursive funtions are �-de�nable.Proof. By the lemmas 3.9{3.12. �The onverse also holds. So for numeri funtions we have ' is reursive i�' is �-de�nable. Moreover also for partial funtions a notion of �-de�nabilityexists. If  is a partial numeri funtion, then we have is partial reursive ,  is �-de�nable.



The Power of Lambda 213.14. Theorem. With respet to the Churh numerals n all reursive fun-tions an be �-de�ned.Proof. De�ne S+ � �xyz:y(xyz);P� � �xyz:x(�pq:q(py))(Kz)I1;Zero � �x:x(Kfalse)true:Then these terms represent the suessor, predeessor and test for zero. Thenas before all reursive funtions an be �-de�ned. �An alternative proof uses `translators' between the numerals pnq and n.3.15. Proposition. There exist terms T , T�1 suh that for all nTn = pnq;T�1pnq = n:Proof. Construt T , T�1 suh thatT � �x:xS+p0q:T�1 = �x:if Zerox then 0 else S+ (T�1(P�x)): �3.16. Corollary (Seond proof of Theorem 3.14). Let ' be a reursive fun-tion (of arity 2 say). Let F represent ' with respet to the numerals pnq.De�ne F � �xy:T�1(F (Tx)(Ty)):Then F represents ' with respet to the Churh numerals. �The representation of pairs in the lambda alulus an also be used to solvemultiple �xedpoint equations.3.17. Multiple Fixedpoint Theorem. Let F1; : : : ; Fn be �-terms. Then wean �nd X1; : : : ;Xn suh thatX1 = F1X1 � � �Xn;...Xn = FnX1 � � �Xn:Observe that for n = 1 this is the ordinary Fixedpoint Theorem (2.12).Proof. We treat the ase n = 2. So we wantX1 = F1X1X2;X2 = F2X1X2:1Term found by J. Velmans.



22 Introdution to Lambda CalulusThe trik is to onstrut X1 and X2 simultaneously, as a pair. By the ordinaryFixedpoint Theorem we an �nd an X suh thatX = [F1(Xtrue)(Xfalse); F2(Xtrue)(Xfalse)℄:Now de�ne X1 � Xtrue, X2 � Xfalse. Then the result follows. This an begeneralized to arbitrary n. �3.18. Example. There exist G;H 2 � suh thatGxy = Hy(Kx);Hx = G(xx)(S(H(xx))):Indeed, we an replae the above equations byG = �xy:Hy(Kx);H = �x:G(xx)(S(H(xx)));and apply the Multiple Fixedpoint Theorem with F1 � �ghxy:hy(Kx) andF2 � �ghx:g(xx)(S(h(xx))).Exerises3.1. (i) Find a �-term Mult suh that for all m;n 2 NMultpnqpmq = pn �mq:(ii) Find a �-term Fa suh that for all n 2 NFapnq = pn!q:3.2. The simple Akermann funtion ' is de�ned as follows.'(0; n) = n+ 1;'(m+ 1; 0) = '(m; 1);'(m+ 1; n+ 1) = '(m;'(m + 1; n)):Find a �-term F that �-de�nes '.3.3. The �-terms Cons, Head and Tail are de�ned byCons � �xy:[x; y℄;Head � �x:xK;Tail � �x:xK�:Find �-terms nil and Null suh thatNull nil = true;Null(Consxy) = false:Give a representation of lists in �-terms and �nd a �-term that de�nes Append,where Append : Lists� Lists! Lists.3.4. Construt �-terms M0;M1; : : : suh that for all n one hasM0 = x;Mn+1 = Mn+2Mn:3.5. Verify that P� (see the �rst proof of Theorem 3.14) indeed �-de�nes the pre-deessor funtion with respet to the Churh numerals.



Chapter 4RedutionThere is a ertain asymmetry in the basi sheme (�). The statement(�x:x2 + 1)3 = 10an be interpreted as `10 is the result of omputing (�x:x2 + 1)3', but not vieversa. This omputational aspet will be expressed by writing(�x:x2 + 1)3!! 10whih reads `(�x:x2 + 1)3 redues to 10'.Apart from this oneptual aspet, redution is also useful for an analysisof onvertibility. The Churh-Rosser theorem says that if two terms are on-vertible, then there is a term to whih they both redue. In many ases theinonvertibility of two terms an be proved by showing that they do not redueto a ommon term.4.1. Definition. (i) A binary relation R on � is alled ompatible (with theoperations) if M R N ) (ZM) R (ZN);(MZ) R (NZ) and(�x:M) R (�x:N):(ii) A ongruene relation on � is a ompatible equivalene relation.(iii) A redution relation on � is a ompatible, reexive and transitive rela-tion.4.2. Definition. The binary relations !�, !!� and =� on � are de�ned in-dutively as follows.(i) 1. (�x:M)N !� M [x := N ℄;2. M !� N ) ZM !� ZN , MZ !� NZ and �x:M !� �x:N .(ii) 1. M !!� M ;2. M !� N ) M !!� N ;3. M !!� N;N !!� L ) M !!� L.23



24 Introdution to Lambda Calulus(iii) 1. M !!� N ) M =� N ;2. M =� N ) N =� M ;3. M =� N;N =� L ) M =�L.These relations are pronouned as follows.M !!� N : M�-redues to N ;M !� N : M�-redues to N in one step;M =� N : M is �-onvertible to N:By de�nition !� is ompatible, !!� is a redution relation and =� is a on-gruene relation.4.3. Example. (i) De�ne ! � �x:xx;
 � !!:Then 
!� 
.(ii) KI
!!� I.Intuitively, M =� N if M is onneted to N via !�-arrows (disregardingthe diretions of these). In a piture this looks as follows.M ���R 	�� ��R� � � � N��R 	�� ��R 	�� ��R 	��� � � ���R 	���4.4. Example. KI
 =� II. This is demonstrated by the following redutions.KI
��R(�y:I)
 II��R 	��I4.5. Proposition. M =� N , � `M = N .Proof. By an easy indution. �4.6. Definition. (i) A �-redex is a term of the form (�x:M)N . In this aseM [x := N ℄ is its ontratum.(ii) A �-term M is a �-normal form (�-nf) if it does not have a �-redex assubexpression.(iii) A term M has a �-normal form if M =� N and N is a �-nf, for someN .



Redution 254.7. Example. (�x:xx)y is not a �-nf, but has as �-nf the term yy.An immediate property of nf's is the following.4.8. Lemma. Let M be a �-nf. ThenM !!� N ) N �M:Proof. This is true if !!� is replaed by !�. Then the result follows bytransitivity. �4.9. Churh-Rosser Theorem. If M !!� N1, M !!� N2, then for some N3one has N1 !!� N3 and N2 !!� N3; in diagramM		������ ������RRN1 N2..............RR 		..............N3The proof is postponed until 4.19.4.10. Corollary. If M =� N , then there is an L suh that M !!� L andN !!� L.An intuitive proof of this fat proeeds by a tiling proedure: given an arrowpath showing M =� N , apply the Churh-Rosser property repeatedly in orderto �nd a ommon redut. For the example given above this looks as follows.M ���R 	�� ��R� � � � N��R 	�� ��R 	�� ��R 	��� � � �..............RR ��R 	��
		.....................

.............�		......� ..............RR �This is made preise below.



26 Introdution to Lambda CalulusProof. Indution on the generation of =�.Case 1. M =� N beause M !!� N . Take L � N .Case 2. M =� N beause N =� M . By the IH there is a ommon �-redutL1 of N , M . Take L � L1.Case 3. M =� N beause M =� N 0, N 0 =� N . ThenM (IH) N 0 (IH) N����RR 		���� ����RR 		����L1 (CR) L2..........RR 		..........L �4.11. Corollary. (i) If M has N as �-nf, then M !!� N .(ii) A �-term has at most one �-nf.Proof. (i) Suppose M =� N with N in �-nf. By Corollary 4.10 M !!� Land N !!� L for some L. But then N � L, by Lemma 4.8, so M !!� N .(ii) Suppose M has �-nf's N1, N2. Then N1 =� N2 (=� M). By Corollary4.10 N1 !!� L, N2 !!� L for some L. But then N1 � L � N2 by Lemma4.8. �4.12. Some onsequenes. (i) The �-alulus is onsistent, i.e. � 6` true =false. Otherwise true =� false by Proposition 4.5, whih is impossible byCorollary 4.11 sine true and false are distint �-nf's. This is a syntationsisteny proof.(ii) 
 has no �-nf. Otherwise 
!!� N with N in �-nf. But 
 only reduesto itself and is not in �-nf.(iii) In order to �nd the �-nf of a term M (if it exists), the various subex-pressions of M may be redued in di�erent orders. By Corollary 4.11 (ii) the�-nf is unique.The proof of the Churh-Rosser theorem oupies 4.13{4.19. The idea ofthe proof is as follows. In order to prove Theorem 4.9, it is suÆient to showthe Strip Lemma: M	��� �� ���� �����RRN1 ............� ............RR N2		..... �.....N3In order to prove this lemma, let M !� N1 be a one step redution resultingfrom hanging a redex R in M in its ontratum R0 in N1. If one makes a



Redution 27bookkeeping of what happens with R during the redution M !!� N2, then byreduing all `residuals' of R in N2 the term N3 an be found. In order to do theneessary bookkeeping an extended set � � � and redution � is introdued.The underlining serves as a `traing isotope'.4.13. Definition (Underlining). (i) � is the set of terms de�ned indutivelyas follows. x 2 V ) x 2 �;M;N 2 � ) (MN) 2 �;M 2 �; x 2 V ) (�x:M) 2 �;M;N 2 �; x 2 V ) ((�x:M)N) 2 �:(ii) The underlined redution relations !� (one step) and !!� are de�nedstarting with the ontration rules(�x:M)N !� M [x := N ℄;(�x:M)N !� M [x := N ℄:Then!� is extended in order to beome a ompatible relation (also with respetto �-abstration). Moreover, !!� is the transitive reexive losure of !�.(iii) If M 2 �, then jM j 2 � is obtained from M by leaving out all underlin-ings. E.g. j(�x:x)((�x:x)(�x:x))j � I(II).4.14. Definition. The map ' : �! � is de�ned indutively as follows.'(x) � x;'(MN) � '(M)'(N);'(�x:M) � �x:'(M);'((�x:M)N) � '(M)[x := '(N)℄:In other words, ' ontrats all redexes that are underlined, from the inside tothe outside.Notation. If jM j � N or '(M) � N , then this will be denoted byM j j- N or M '- N:4.15. Lemma. M 0 �������������� �����������������-- N 0j j? ?j jM � -- N M 0; N 0 2 �;M;N 2 �:



28 Introdution to Lambda CalulusProof. First suppose M !� N . Then N is obtained by ontrating a redexin M and N 0 an be obtained by ontrating the orresponding redex in M 0.The general statement follows by transitivity. �4.16. Lemma. (i) Let M;N 2 �. Then'(M [x := N ℄) � '(M)[x := '(N)℄:(ii) M � -- N'? ?''(M) ������������ ���������������-- '(N) M;N 2 �:
Proof. (i) By indution on the struture ofM , using the Substitution Lemma(see Exerise 2.2) in ase M � (�y:P )Q. The ondition of that lemma may beassumed to hold by our onvention about free variables.(ii) By indution on the generation of !!� , using (i). �4.17. Lemma. M	���j j ��� ��� '���RN ��������������� ������������������-- L M 2 �;N; L 2 �:Proof. By indution on the struture of M. �4.18. Strip lemma. M	��� �� ���� �����RRN1 .............� .............RR N2		..... �.....N3

M;N1; N2; N3 2 �:
Proof. Let N1 be the result of ontrating the redex ourrene R � (�x:P )QinM . LetM 0 2 � be obtained fromM by replaing R by R0 � (�x:P )Q. Then



Redution 29jM 0j � M and '(M 0) � N1. By the lemmas 4.15, 4.16 and 4.17 we an eretthe diagram M	��� �� HHHHHHHH �HHHHHHHHjj
I�� j j��N1 � ' M 0........................� ........................jj

................................................jj� N2		.....� ..... I�� j j��N3 � ' N 02whih proves the Strip Lemma. �4.19. Proof of the Churh-Rosser Theorem. If M !!� N1, then M �M1 !� M2 !� � � � !� Mn � N1. Hene the CR property follows from theStrip Lemma and a simple diagram hase:M	�� ������������RR
M1	�� ........................................RR

�. . . ........................................RR
�	��N1 N2........................................RR

		......�		......�. . .�		......� �4.20. Definition. For M 2 � the redution graph of M , notation G�(M), isthe direted multigraph with verties fN jM !!� Ng and direted by !�.



30 Introdution to Lambda Calulus4.21. Example. G�(I(Ix)) is
x

I x( )I

xI

sometimes simply drawn as
It an happen that a term M has a nf, but at the same time an in�niteredution path. Let 
 � (�x:xx)(�x:xx). Then 
 ! 
 ! � � � so KI
 !KI
 ! � � �, and KI
 !! I. Therefore a so alled strategy is neessary inorder to �nd the normal form. We state the following theorem; for a proof seeBarendregt (1984), Theorem 13.2.2.4.22. Normalization Theorem. If M has a normal form, then iterated on-tration of the leftmost redex leads to that normal form.In other words: the leftmost redution strategy is normalizing . This fatan be used to �nd the normal form of a term, or to prove that a ertain termhas no normal form.4.23. Example. K
I has an in�nite leftmost redution path, viz.K
I!� (�y:
)I!� 
!� 
!� � � � ;and hene does not have a normal form.The funtional language (pure) Lisp uses an eager or appliative evaluationstrategy, i.e. whenever an expression of the form FA has to be evaluated, A isredued to normal form �rst, before `alling' F . In the �-alulus this strat-egy is not normalizing as is shown by the two redution paths for KI
 above.There is, however, a variant of the lambda alulus, alled the �I-alulus, inwhih the eager evaluation strategy is normalizing. In this �I-alulus termslike K, `throwing away' 
 in the redution KI
 !! I do not exist. The `ordi-nary' �-alulus is sometimes referred to as �K-alulus; see Barendregt (1984),Chapter 9.Remember the �xedpoint ombinator Y. For eah F 2 � one has YF =�F (YF ), but neither YF !!� F (YF ) nor F (YF ) !!� YF . In order to solve



Redution 31redution equations one an work with A.M. Turing's �xedpoint ombinator,whih has a di�erent redution behaviour.4.24. Definition. Turing's �xedpoint ombinator � is de�ned by settingA � �xy:y(xxy);� � AA:4.25. Proposition. For all F 2 � one has�F !!� F (�F ):Proof. �F � AAF!� (�y:y(AAy))F!� F (AAF )� F (�F ): �4.26. Example. 9G 8X GX !! X(XG). Indeed,8X GX !! X(XG) ( G!! �x:x(xG)( G!! (�gx:x(xg))G( G � �(�gx:x(xg)):Also the Multiple Fixedpoint Theorem has a `reduing' variant.4.27. Theorem. Let F1; : : : ; Fn be �-terms. Then we an �nd X1; : : : ;Xn suhthat X1 !! F1X1 � � �Xn;...Xn !! FnX1 � � �Xn:Proof. As for the equational Multiple Fixedpoint Theorem 3.17, but nowusing �. �Exerises4.1. Show 8M 9N [N in �-nf and N I!!� M ℄.4.2. Construt four terms M with G�(M) respetively as follows.



32 Introdution to Lambda Calulus
4.3. Show that there is no F 2 � suh that for all M;N 2 �F (MN) =M:4.4.* LetM � AAx with A � �axz:z(aax). Show that G�(M) ontains as subgraphsan n-dimensional ube for every n 2 N.4.5. (A. Visser)(i) Show that there is only one redex R suh that G�(R) is as follows.(ii) Show that there is no M 2 � with G�(M) is

[Hint. Consider the relative positions of redexes.℄4.6.* (C. B�ohm) Examine G�(M) with M equal to(i) HIH , H � �xy:x(�z:yzy)x.(ii) LLI, L � �xy:x(yy)x.(iii) QIQ, Q � �xy:xyIxy.4.7.* (J.W. Klop) Extend the �-alulus with two onstants Æ, ". The redutionrules are extended to inlude ÆMM ! ". Show that the resulting system isnot Churh-Rosser.[Hint. De�ne terms C;D suh thatCx !! Æx(Cx)D !! CDThen D !! " and D !! C" in the extended redution system, but there is noommon redut.℄4.8. Show that the term M � AAx with A � �axz:z(aax) does not have a normalform.4.9. (i) Show � 6`WWW = !3!3, with W � �xy:xyy and !3 � �x:xxx.(ii) Show � 6` Bx = By with Bz � AzAz and Az � �p:ppz.4.10. Draw G�(M) for M equal to:(i) WWW , W � �xy:xyy.(ii) !!, ! � �x:xx.(iii) !3!3, !3 � �x:xxx.(iv) (�x:Ixx)(�x:Ixx).(v) (�x:I(xx))(�x:I(xx)).(vi) II(III).4.11. The length of a term is its number of symbols times 0:5 m. Write down a�-term of length < 30 m with normal form > 101010 light year.[Hint. Use Proposition 2.15 (ii). The speed of light is  = 3� 1010 m/s.℄



Chapter 5Type AssignmentThe lambda alulus as treated so far is usually referred to as a type-free theory.This is so, beause every expression (onsidered as a funtion) may be applied toevery other expression (onsidered as an argument). For example, the identityfuntion I � �x:x may be applied to any argument x to give as result that samex. In partiular I may be applied to itself.There are also typed versions of the lambda alulus. These are introduedessentially in Curry (1934) (for the so alled Combinatory Logi, a variant ofthe lambda alulus) and in Churh (1940). Types are usually objets of asyntati nature and may be assigned to lambda terms. If M is suh a termand a type A is assigned to M , then we say `M has type A' or `M in A'; thedenotation used for this is M : A. For example in some typed systems one hasI : (A!A), that is, the identity I may get as type A!A. This means that ifx being an argument of I is of type A, then also the value Ix is of type A. Ingeneral, A!B is the type of funtions from A to B.Although the analogy is not perfet, the type assigned to a term may beompared to the dimension of a physial entity. These dimensions prevent usfrom wrong operations like adding 3 volt to 2 amp�ere. In a similar way typesassigned to lambda terms provide a partial spei�ation of the algorithms thatare represented and are useful for showing partial orretness.Types may also be used to improve the eÆieny of ompilation of termsrepresenting funtional algorithms. If for example it is known (by looking attypes) that a subexpression of a term (representing a funtional program) ispurely arithmetial, then fast evaluation is possible. This is beause the ex-pression then an be exeuted by the alu of the mahine and not in the slowerway in whih symboli expressions are evaluated in general.The two original papers of Curry and Churh introduing typed versions ofthe lambda alulus give rise to two di�erent families of systems. In the typedlambda aluli �a la Curry terms are those of the type-free theory. Eah termhas a set of possible types. This set may be empty, be a singleton or onsistof several (possibly in�nitely many) elements. In the systems �a la Churh theterms are annotated versions of the type-free terms. Eah term has (up to anequivalene relation) a unique type that is usually derivable from the way theterm is annotated.The Curry and Churh approahes to typed lambda alulus orrespond to33



34 Introdution to Lambda Calulustwo paradigms in programming. In the �rst of these a program may be writtenwithout typing at all. Then a ompiler should hek whether a type an beassigned to the program. This will be the ase if the program is orret. Awell-known example of suh a language is ML, see Milner (1984). The style oftyping is alled impliit typing . The other paradigm in programming is alledexpliit typing and orresponds to the Churh version of typed lambda aluli.Here a program should be written together with its type. For these languagestype-heking is usually easier, sine no types have to be onstruted. Examplesof suh languages are Algol 68 and Pasal . Some authors designate the Currysystems as `lambda aluli with type assignment ' and the Churh systems as`systems of typed lambda alulus'.Within eah of the two paradigms there are several versions of typed lambdaalulus. In many important systems, espeially those �a la Churh, it is the asethat terms that do have a type always possess a normal form. By the unsolv-ability of the halting problem this implies that not all omputable funtions anbe represented by a typed term, see Barendregt (1990), Theorem 4.2.15. Thisis not so bad as it sounds, beause in order to �nd suh omputable funtionsthat annot be represented, one has to stand on one's head. For example in�2, the seond order typed lambda alulus, only those partial reursive fun-tions annot be represented that happen to be total, but not provably so inmathematial analysis (seond order arithmeti).Considering terms and types as programs and their spei�ations is not theonly possibility. A type A an also be viewed as a proposition and a termM inAas a proof of this proposition. This so alled propositions-as-types interpretationis independently due to de Bruijn (1970) and Howard (1980) (both paperswere oneived in 1968). Hints in this diretion were given in Curry and Feys(1958) and in L�auhli (1970). Several systems of proof heking are basedon this interpretation of propositions-as-types and of proofs-as-terms. See e.g.de Bruijn (1980) for a survey of the so alled automath proof heking system.Normalization of terms orresponds in the formulas-as-types interpretation tonormalisation of proofs in the sense of Prawitz (1965). Normal proofs oftengive useful proof theoreti information, see e.g. Shwihtenberg (1977).In this setion a typed lambda alulus will be introdued in the style ofCurry. For more information, see Barendregt (1992).The system �!-CurryOriginally the impliit typing paradigm was introdued in Curry (1934) for thetheory of ombinators. In Curry and Feys (1958) and Curry et al. (1972) thetheory was modi�ed in a natural way to the lambda alulus assigning elementsof a given set T of types to type free lambda terms. For this reason these aluli�a la Curry are sometimes alled systems of type assignment . If the type � 2 Tis assigned to the term M 2 � one writes `M : �, sometimes with a subsriptunder ` to denote the partiular system. Usually a set of assumptions � isneeded to derive a type assignment and one writes � ` M : � (pronoune thisas `� yields M in �'). A partiular Curry type assignment system depends ontwo parameters, the set T and the rules of type assignment. As an example we



Type Assignment 35now introdue the system �!-Curry.5.1. Definition. The set of types of �!, notation Type(�!), is indutivelyde�ned as follows. We write T = Type(�!). Let V = f�; �0; : : :g be a set oftype variables. It will be onvenient to allow type onstants for basi types suhas Nat, Bool. Let B be suh a olletion. Then� 2 V ) � 2 T;B 2 B ) B 2 T;�; � 2 T ) (�!�) 2 T (funtion spae types).For suh de�nitions it is onvenient to use the following abstrat syntax toform T. T = V j B j T!Twith V = � j V0 (type variables).Notation. (i) If �1; : : : ; �n 2 T then�1!�2!� � �!�nstands for (�1!(�2!� � �!(�n�1!�n)��));that is, we use assoiation to the right.(ii) �; �; ; : : : denote arbitrary type variables.5.2. Definition. (i) A statement is of the formM : � withM 2 � and � 2 T.This statement is pronouned as `M in �'. The type � is the prediate and theterm M is the subjet of the statement.(ii) A basis is a set of statements with only distint (term) variables assubjets.5.3. Definition. Type derivations in the system �! are built up from as-sumptions x:�, using the following inferene rules.M : �!� N : �MN : � x : ����M : ��x:M : �!�5.4. Definition. (i) A statement M : � is derivable from a basis �, notation� `M : �(or � `�! M : � if we wish to stress the typing system) if there is a derivationof M : � in whih all non-anelled assumptions are in �.(ii) We use `M : � as shorthand for ; `M : �.



36 Introdution to Lambda Calulus5.5. Example. (i) Let � 2 T. Then ` �fx:f(fx) : (�!�)!�!�, whih isshown by the following derivation.f : �!� (2) f : �!� (2) x : � (1)fx : �f(fx) : � (1)�x:f(fx) : �!� (2)�fx:f(fx) : (�!�)!�!�The indies (1) and (2) are bookkeeping devies that indiate at whih appli-ation of a rule a partiular assumption is being anelled.(ii) One has ` K : �!�!� for any �; � 2 T, whih is demonstrated asfollows. x : � (1)�y:x : �!� (1)�xy:x : �!�!�(iii) Similarly one an show for all � 2 T` I : �!�:(iv) An example with a non-empty basis is the statementy:� ` Iy : �:Properties of �!Several properties of type assignment in �! are valid. The �rst one analyseshow muh of a basis is neessary in order to derive a type assignment.5.6. Definition. Let � = fx1:�1; : : : ; xn:�ng be a basis.(i) Write dom(�) = fx1; : : : ; xng and �i = �(xi). That is, � is onsideredas a partial funtion.(ii) Let V0 be a set of variables. Then � � V0 = fx:� j x 2 V0&� = �(x)g.(iii) For �; � 2 T substitution of � for � in � is denoted by �[� := � ℄.5.7. Basis Lemma. Let � be a basis.(i) If �0 � � is another basis, then� `M : � ) �0 `M : �:(ii) � `M : � ) FV(M) � dom(�).(iii) � `M : � ) � � FV(M) `M : �.Proof. (i) By indution on the derivation of M : �. Sine suh proofs willour frequently we will spell it out in this simple situation in order to be shorterlater on.



Type Assignment 37Case 1. M : � is x:� and is element of �. Then also x:� 2 �0 and hene�0 `M : �.Case 2. M : � is (M1M2) : � and follows diretly from M1 : (�!�) andM2 : � for some � . By the IH one has �0 `M1 : (�!�) and �0 `M2 : � . Hene�0 ` (M1M2) : �.Case 3. M : � is (�x:M1) : (�1!�2) and follows diretly from �; x : �1 `M1 : �2. By the variable onvention it may be assumed that the bound variablex does not our in dom(�0). Then �0; x:�1 is also a basis whih extends �; x:�1.Therefore by the IH one has �0; x:�1 `M1 : �2 and so �0 ` (�x:M1) : (�1!�2).(ii) By indution on the derivation of M : �. We only treat the ase thatM : � is (�x:M1) : (�1!�2) and follows diretly from �; x:�1 `M1 : �2. Let y 2FV(�x:M1), then y 2 FV(M1) and y 6� x. By the IH one has y 2 dom(�; x:�1)and therefore y 2 dom(�).(iii) By indution on the derivation of M : �. We only treat the ase thatM : � is (M1M2) : � and follows diretly from M1 : (�!�) andM2 : � for some� . By the IH one has � � FV(M1) `M1 : (�!�) and � � FV(M2) `M2 : � . By(i) it follows that � � FV(M1M2) ` M1 : (�!�)and � � FV(M1M2) ` M2 : �and hene � � FV(M1M2) ` (M1M2) : �. �The seond property analyses how terms of a ertain form get typed. It isuseful among other things to show that ertain terms have no types.5.8. Generation Lemma. (i) � ` x : � ) (x:�) 2 �:(ii) � `MN : � ) 9� [� `M : (�!�)&� ` N : �℄:(iii) � ` �x:M : � ) 9�; � [�; x:� `M : � & � � (�!�)℄.Proof. By indution on the struture of derivations. �5.9. Proposition (Typability of subterms). Let M 0 be a subterm of M . Then� `M : � ) �0 `M 0 : �0 for some �0 and �0.The moral is: if M has a type, i.e. � ` M : � for some � and �, then everysubterm has a type as well.Proof. By indution on the generation of M . �5.10. Substitution Lemma.(i) � `M : � ) �[� := � ℄ `M : �[� := � ℄:(ii) Suppose �; x:� `M : � and � ` N : �. Then � `M [x := N ℄ : � .Proof. (i) By indution on the derivation of M : �.(ii) By indution on the derivation showing �; x:� `M : � . �The following result states that the set of M 2 � having a ertain type in�! is losed under redution.5.11. Subjet Redution Theorem. Suppose M !!� M 0. Then� `M : � ) � `M 0 : �:



38 Introdution to Lambda CalulusProof. Indution on the generation of !!� using the Generation Lemma 5.8and the Substitution Lemma 5.10. We treat the prime ase, namely that M �(�x:P )Q and M 0 � P [x := Q℄. Well, if� ` (�x:P )Q : �then it follows by the Generation Lemma that for some � one has� ` (�x:P ) : (�!�) and � ` Q : �:Hene one more by the Generation Lemma�; x:� ` P : � and � ` Q : �and therefore by the Substitution Lemma� ` P [x := Q℄ : �: �Terms having a type are not losed under expansion. For example,` I : (�!�); but 6` KI (�x:xx) : (�!�):See Exerise 5.1. One even has the following stronger failure of subjet expan-sion, as is observed in van Bakel (1992).5.12. Observation. There are M;M 0 2 � and �; �0 2 T suh that M 0 !!� Mand `M : �; `M 0 : �0;but 6`M 0 : �:Proof. TakeM � �xy:y;M 0 � SK, � � �!(�!�) and �0 � (�!�)!(�!�);do Exerise 5.1. �All typable terms have a normal form. In fat, the so-alled strong nor-malization property holds: if M is a typable term, then all redutions startingfrom M are �nite.Deidability of type assignmentFor the system of type assignment several questions may be asked. Note thatfor � = fx1:�1; : : : ; xn:�ng one has� `M : � , ` (�x1:�1 � � � �xn:�n:M) : (�1!� � �!�n!�);therefore in the following one has taken � = ;. Typial questions are(1) Given M and �, does one have `M : �?(2) Given M , does there exist a � suh that `M : �?(3) Given �, does there exist an M suh that `M : �?



Type Assignment 39These three problems are alled type heking , typability and inhabitation re-spetively and are denoted by M : �?, M : ? and ? : �.Type heking and typability are deidable. This an be shown using thefollowing result, independently due to Curry (1969), Hindley (1969), and Milner(1978).5.13. Theorem. (i) It is deidable whether a term is typable in �!.(ii) If a term M is typable in �!, then M has a prinipal type sheme, i.e.a type � suh that every possible type for M is a substitution instane of �.Moreover � is omputable from M .5.14. Corollary. Type heking for �! is deidable.Proof. In order to hek M : � it suÆes to verify that M is typable and that� is an instane of the prinipal type of M . �For example, a prinipal type sheme of K is �!�!�.PolymorphismNote that in �! one has ` I : �!� for all � 2 T:In the polymorphi lambda alulus this quanti�ation an be internalized bystating ` I : 8�:�!�:The resulting system is the polymorphi of seond-order lambda alulus dueto Girard (1972) and Reynolds (1974).5.15. Definition. The set of types of �2 (notation T = Type(�2)) is spei�edby the syntax T = V j B j T!T j 8V:T:5.16. Definition. The rules of type assignment are those of �!, plusM : 8�:�M : �[� := � ℄ M : �M : 8�:�In the latter rule, the type variable � may not our free in any assumption onwhih the premiss M : � depends.5.17. Example. (i) ` I : 8�:�!�.(ii) De�ne Nat � 8�:(�!�)!�!�. Then for the Churh numerals n ��fx:fn(x) we have ` n : Nat.The following is due to Girard (1972).5.18. Theorem. (i) The Subjet Redution property holds for �2.(ii) �2 is strongly normalizing.Typability in �2 is not deidable; see Wells (1994).



40 Introdution to Lambda CalulusExerises5.1. (i) Give a derivation of ` SK : (�!�)!(�!�):(ii) Give a derivation of ` KI : �!(�!�):(iii) Show that 6` SK : (�!�!�).(iv) Find a ommon �-redut of SK and KI. What is the most general type forthis term?5.2. Show that �x:xx and KI(�x:xx) have no type in �!.5.3. Find the most general types (if they exist) for the following terms.(i) �xy:xyy.(ii) SII.(iii) �xy:y(�z:z(yx)).5.4. Find terms M;N 2 � suh that the following hold in �!.(i) `M : (�!�)!(�!)!(�!).(ii) ` N : (((�!�)!�)!�)!(�!�).5.5. Find types in �2 for the terms in the exerises 5.2 and 5.3.



Chapter 6ExtensionsIn Chapter 3 we have seen that all omputable funtions an be expressedin the lambda alulus. For reasons of eÆieny, reliability and onvenienethis language will be extended. The set of �-terms � will be extended withonstants. Some of the onstants are seleted to represent primitive data (suhas numbers) and operations on these (suh as addition). Some new redutionrules (the so alled Æ-rules) are introdued to express the operational semantisof these operations. Even if these onstants and operations an be implementedin the lambda alulus, it is worthwhile to have primitive symbols for them.The reason is that in an implementation of the lambda alulus addition of theChurh numerals runs less eÆient than the usual implementation in hardwareof addition of binary represented numbers. Having numerals and addition asprimitives therefore reates the possibility to interprete these eÆiently.From now on we allow onstants in �-terms. Let C be a set of onstants.6.1. Definition. The set of lambda terms with onstants, notation �(C ), isde�ned indutively as follows.C 2 C ) C 2 �(C );x 2 V ) x 2 �(C );M;N 2 �(C ) ) (MN) 2 �(C );M 2 �(C ); x 2 V ) (�x:M) 2 �(C ):This de�nition given as an abstrat syntax is as follows.�(C ) ::= C j V j �(C ) �(C ) j �V �(C ):6.2. Definition (Æ-redution). Let X � �(C ) be a set of losed normal forms.Usually we take X � C . Let f : Xk!� be an `externally de�ned' funtion. Inorder to represent f , a so-alled Æ-rule may be added to the �-alulus. This isdone as follows.(1) A speial onstant in C is seleted and is given some name, say Æ (= Æf ).(2) The following ontration rules are added to those of the �-alulus:ÆM1 � � �Mk ! f(M1; : : : ;Mk);for M1; : : : ;Mk 2 X. 41



42 Introdution to Lambda CalulusNote that for a given funtion f this is not one ontration rule but in fata rule shema. The resulting extension of the �-alulus is alled �Æ. Theorresponding notion of (one step) redution is denoted by (!�Æ) !!�Æ.So Æ-redution is not an absolute notion, but depends on the hoie of f .6.3. Theorem (G. Mitshke). Let f be a funtion on losed normal forms.Then the resulting notion of redution !!�Æ satis�es the Churh-Rosser prop-erty.Proof. Follows from Theorem 15.3.3 in Barendregt (1984). �The notion of normal form generalises to �Æ-normal form. So does theonept of leftmost redution. The �Æ-normalforms an be found by a leftmostredution (notation !!`�Æ).6.4. Theorem. If M !!�Æ N and N is in �Æ-nf, then M !!`�Æ N .Proof. Analogous to the proof of the theorem for �-normal forms (4.22). �6.5. Example. One of the �rst versions of a Æ-rule is in Churh (1941). HereX is the set of all losed normal forms and for M;N 2 X we haveÆCMN ! true; if M � N ;ÆCMN ! false; if M 6� N .Another possible set of Æ-rules is for the Booleans.6.6. Example. The following onstants are seleted in C .true; false ;not ;and ; ite (for if then else).The following Æ-rules are introdued.not true ! false ;not false ! true;and true true ! true;and true false ! false ;and false true ! false ;and false false ! false ;ite true ! true (� �xy:x);ite false ! false (� �xy:x).It follows that ite true x y !! x;ite false x y !! y:



Extensions 43Now we introdue as Æ-rules some operations on the set of integersZ= f: : : ;�2;�1; 0; 1; 2; : : :g:6.7. Example. For eah n 2 Z a onstant in C is seleted and given the namen. (We will express this as follows: for eah n 2 Z a onstant n 2 C is hosen.)Moreover the following onstants in C are seleted:plus ;minus ; times ;divide ; equal ; error :Then we introdue the following Æ-rules (shemes). For m;n 2 Zplus nm ! n+m;minus nm ! n�m;times nm ! n �m;divide nm ! n�m; if m 6= 0;divide n0 ! error ;equal nn ! true;equal nm ! false; if n 6= m:We may add rules like plus n error ! error :Similar Æ-rules an be introdued for the set of reals.Again another set of Æ-rules is onerned with haraters.6.8. Example. Let � be some linearly ordered alphabet. For eah symbols 2 � we hoose a onstant `s' 2 C . Moreover we hoose two onstants Æ� andÆ= in C and formulate the following Æ-rules.Æ�`s1'`s2' ! true; if s1 preedes s2 in the ordering of �;Æ�`s1'`s2' ! false ; otherwise.Æ=`s1'`s2' ! true; if s1 = s2;Æ=`s1'`s2' ! false ; otherwise.It is also possible to represent `multiple valued' funtions F by putting asÆ-rule Æn!m; provided that F (n) = m.Of ourse the resulting �Æ-alulus does not satisfy the Churh-Rosser theoremand an be used to deal with non-deterministi omputations. We will notpursue this possibility, however.We an extend the type assignment system �! to deal with onstants byadding typing axioms of the form C : �:



44 Introdution to Lambda CalulusFor the system with integers this would result in the following. Let Z;B 2 Bbe basi type onstants (with intended interpretation Z and booleans, respe-tively). Then one adds the following typing axioms to �!.true : B; false : B;not : B!B; and : B!B!B;n : Z; error : Z;plus : Z!Z!Z; minus : Z!Z!Z; times : Z!Z!Z; divide : Z!Z!Z;equal : Z!Z!B:6.9. Example. ` �xy:times x(plus xy) : Z!Z!Z; as is shown by the follow-ing derivation.times : Z!Z!Z x : Z (2)times x : Z!Z plus : Z!Z!Z x : Z (2)plus x : Z!Z y : Z (1)plus xy : Ztimes x(plus xy) : Z (1)�y:times x(plus xy) : Z!Z (2)�xy:times x(plus xy) : Z!Z!ZThe Strong Normalization property for (plain) �! implies that not all re-ursive funtions are de�nable in the system. The same holds for the above�Æ-alulus with integers. The following system of type assignment is suhthat all omputable funtions are representable by a typed term. Indeed, thesystem also assigns types to non-normalizing terms by introduing a primitive�xedpoint ombinator Y having type (�!�)!� for every �.6.10. Definition. (i) The �Y Æ-alulus is an extension of the �Æ-alulus inwhih there is a onstant Y with redution ruleY f ! f(Y f):(ii) Type assignment to �Y Æ-terms is de�ned by adding the axiomsY : (�!�)!�for eah � 2 T. The resulting system is denoted by �Y Æ!.Beause of the presene of Y , not all terms have a normal form. Withoutproof we state the following.6.11. Theorem. (i) The �Y Æ-alulus satis�es the Churh-Rosser property.(ii) If a term in the �Y Æ-alulus has a normal form, then it an be foundusing leftmost redution.(iii) The Subjet Redution property holds for �Y Æ!.



Extensions 456.12. Theorem. All omputable funtions an be represented in the �Y Æ-alulus by a term typable in �Y Æ!.Proof. The onstrution uses the primitive numerals n. If we take S+Y Æ ��x:plus x1, P�Y Æ � �x:minus x1, and ZeroY Æ � �x:equal x0, then the proofof Theorem 3.13 an be imitated using Y instead of the �xedpoint ombinatorY. The types for the funtions de�ned using Y are natural. �One ould also add Y to the system �2 using the (single) axiomY : 8�:(�!�)!�:Exerises6.1. Let kn be de�ned by k0 � I and kn+1 � K(kn). Show that on the kn thereursive funtions an be represented by terms in the �ÆC-alulus.6.2. Write down a �Æ-term F in the system of Example 6.7 suh thatFn!! n! + n:6.3. Write down a �Æ-term F in the system of Example 6.8 suh that for s1; s2; t1; t2 2� we haveF [`s1'; `t1'℄[`s2'; `t2'℄ !! true; if (s1; t1) preedes (s2; t2) in thelexiographial ordering of ���;!! false; otherwise.6.4. Give suitable typing axioms (in �! and �2) for the onstants in Example 6.6.





Chapter 7Redution SystemsIn this hapter we onsider some alternative models of omputation based onrewriting. The objets in these models are terms built up from onstants witharity in N and variables, using appliation.7.1. Definition. Let C be a set of onstants. The set of terms over C (notationT = T (C)) is de�ned as follows.x 2 V ) x 2 T ;C 2 C; t1 : : : ; tk 2 T ) C(t1; : : : ; tn) 2 T ;where n = arity(C).Reursive programming shemesThe simplest redution systems are reursive programming shemes (RPS).The general form of an RPS has as language the terms T (C). On these aredution relation is de�ned as follows.C1(x1; : : : ; xn1) ! t1;...Ck(x1; : : : ; xnk) ! tk;where ni = arity(Ci). Here we have(1) The C's are all di�erent onstants.(2) The free variables in ti are among the x1; : : : ; xni .(3) In the t's there may be arbitrary C's.For example, the systemC(x; y) ! D(C(x; x); y);D(x; y) ! C(x;D(x; y))is an RPS.The �-alulus is powerful enough to `implement' all these RPS's. We an�nd �-terms with the spei�ed redution behaviour.47



48 Introdution to Lambda Calulus7.2. Theorem. Eah RPS an be represented in �-alulus. For example (seeabove), there are terms C and D suh thatCxy !!� D(Cxx)y;Dxy !!� Cx(Dxy):Proof. By the reduing variant 4.27 of the Multiple Fixedpoint Theorem. �Without proof we mention the following.7.3. Theorem. Every RPS satis�es the Churh-Rosser theorem.Term rewrite systemsMore general than the RPS's are the so alled term rewrite systems (TRS's),whih use pattern mathing in funtion de�nitions. A typial example isA(0; y) ! y;A(S(x); y) ! S(A(x; y)):Then, for example, A(S(0);S(S(0)))!! S(S(S(0))).The di�erene with RPS's is that in a TRS the arguments of a rewrite rulemay have some struture. A onstant in a TRS that does not have a ontrationrule (i.e. no rewrite rule starts with that onstant) is alled a onstrutor . Theother onstants are alled funtions.Not all TRS's satisfy the Churh-Rosser property. Consider the systemA(x) ! B;A(B) ! C:Then A(B) redues both to B and to C. It is said that the two rules overlap.The following rule overlaps with itself:D(D(x))! E:Then D(D(D(D))) redues to E and to D(E).See Klop (1992) for a survey and referenes on TRS's.Combinatory logi (CL) is a redution system related to �-alulus. Termsin CL onsist of (appliations of) onstants I , K, S and variables, withoutarity restritions. The ontration rules areIx ! x;Kxy ! x;Sxyz ! xz(yz):(Note that KI is a nf.) Then KII ! I , and SII(SII) has no normalform. This CL an be represented as a TRS by onsidering I ;K;S as (0-ary)onstrutors, together with a funtion Ap with arity 2, as follows.Ap(I ; x) ! x;Ap(Ap(K; x); y) ! x;Ap(Ap(Ap(S; x); y); z) ! Ap(Ap(x; z);Ap(y; z)):



Redution Systems 49The CL-term SII(SII) is translated into
 � Ap(!;!) where! � Ap(Ap(S; I); I).The Normalization Theorem does not extend to TRS's. Consider the aboveTRS-version of CL, together with the rulesor(x; true) ! true;or(true; x) ! true;or(false; false) ! false:The expression or(A;B)an, in general, not be normalized by ontrating always the leftmost redex. Infat A and B have to be evaluated in parallel. Consider e.g. the termsor(
;Ap(I ; true))and or(Ap(I ; true);
):Therefore this system is alled non-sequential .Combinatory redution systemsEven more general than TRS's are the ombinatory redution systems (CRS)introdued in Klop (1980). These are TRS's together with arbitrary variablebinding operations. We have in fat CRS���� ����� TRS���� ����RPSExerises7.1. (Toyama et al. (1989a), see also (1989b)) A TRS is alled strongly normalizing(SN) if there is no term that has an in�nite redution path. So (the TRS versionof) CL(S;K) is not SN, but CL(I ;K) (with the obvious redution rules) is.De�ne the following two TRS's.R1: F (4; 5; 6; x) ! F (x; x; x; x);F (x; y; z; w) ! 7;



50 Introdution to Lambda Calulus1 2 3?����R	���� ����R	���� ?4 5 6����R ?	����7R2: G(x; x; y) ! x;G(x; y; x) ! x;G(y; x; x) ! x:Show that both R1 and R2 are SN, but the union R1 [ R2 is not.
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