
Introdu
tion to Lambda Cal
ulusHenk Barendregt Erik BarendsenRevised editionO
tober 1994

Contents
1 Introdu
tion 52 Conversion 93 The Power of Lambda 174 Redu
tion 235 Type Assignment 336 Extensions 417 Redu
tion Systems 47Bibliography 51

3

Chapter 1Introdu
tionSome historyLeibniz had as ideal the following.(1) Create a `universal language' in whi
h all possible problems
an be stated.(2) Find a de
ision method to solve all the problems stated in the universallanguage.If one restri
ts oneself to mathemati
al problems, point (1) of Leibniz' idealis ful�lled by taking some form of set theory formulated in the language of�rst order predi
ate logi
. This was the situation after Frege and Russell (orZermelo).Point (2) of Leibniz' ideal be
ame an important philosophi
al question. `Canone solve all problems formulated in the universal language?' It seems not,but it is not
lear how to prove that. This question be
ame known as theEnts
heidungsproblem.In 1936 the Ents
heidungsproblem was solved in the negative independentlyby Alonzo Chur
h and Alan Turing. In order to do so, they needed a formali-sation of the intuitive notion of `de
idable', or what is equivalent `
omputable'.Chur
h and Turing did this in two di�erent ways by introdu
ing two models of
omputation.(1) Chur
h (1936) invented a formal system
alled the lambda
al
ulus andde�ned the notion of
omputable fun
tion via this system.(2) Turing (1936/7) invented a
lass of ma
hines (later to be
alled Turingma
hines) and de�ned the notion of
omputable fun
tion via these ma
hines.Also in 1936 Turing proved that both models are equally strong in the sensethat they de�ne the same
lass of
omputable fun
tions (see Turing (1937)).Based on the
on
ept of a Turing ma
hine are the present day Von Neu-mann
omputers. Con
eptually these are Turing ma
hines with random a

essregisters. Imperative programming languages su
h as Fortran, Pas
al et
eteraas well as all the assembler languages are based on the way a Turing ma
hineis instru
ted: by a sequen
e of statements.Fun
tional programming languages, likeMiranda, ML et
etera, are based onthe lambda
al
ulus. An early (although somewhat hybrid) example of su
h alanguage is Lisp. Redu
tion ma
hines are spe
i�
ally designed for the exe
utionof these fun
tional languages. 5

6 Introdu
tion to Lambda Cal
ulusRedu
tion and fun
tional programmingA fun
tional program
onsists of an expression E (representing both the al-gorithm and the input). This expression E is subje
t to some rewrite rules.Redu
tion
onsists of repla
ing a part P of E by another expression P 0 a

ord-ing to the given rewrite rules. In s
hemati
 notationE[P ℄! E[P 0℄;provided that P ! P 0 is a

ording to the rules. This pro
ess of redu
tionwill be repeated until the resulting expression has no more parts that
an berewritten. This so
alled normal form E� of the expression E
onsists of theoutput of the given fun
tional program.An example: (7 + 4) � (8 + 5 � 3) ! 11 � (8 + 5 � 3)! 11 � (8 + 15)! 11 � 23! 253:In this example the redu
tion rules
onsist of the `tables' of addition and ofmultipli
ation on the numerals.Also symboli

omputations
an be done by redu
tion. For example�rst of (sort (append (`dog', `rabbit') (sort ((`mouse', `
at'))))) !! �rst of (sort (append (`dog', `rabbit') (`
at', `mouse')))! �rst of (sort (`dog', `rabbit', `
at', `mouse'))! �rst of (`
at', `dog', `mouse', `rabbit')! `
at':The ne
essary rewrite rules for append and sort
an be programmed easilyin a few lines. Fun
tions like append given by some rewrite rules are
alled
ombinators.Redu
tion systems usually satisfy the Chur
h-Rosser property , whi
h statesthat the normal form obtained is independent of the order of evaluation ofsubterms. Indeed, the �rst example may be redu
ed as follows:(7 + 4) � (8 + 5 � 3) ! (7 + 4) � (8 + 15)! 11 � (8 + 15)! 11 � 23! 253;or even by evaluating several expressions at the same time:(7 + 4) � (8 + 5 � 3) ! 11 � (8 + 15)! 11 � 23! 253:

Introdu
tion 7Appli
ation and abstra
tionThe �rst basi
 operation of the �-
al
ulus is appli
ation. The expressionF �Aor FAdenotes the data F
onsidered as algorithm applied to the data A
onsideredas input. This
an be viewed in two ways: either as the pro
ess of
omputationFA or as the output of this pro
ess. The �rst view is
aptured by the notionof
onversion and even better of redu
tion; the se
ond by the notion of models(semanti
s).The theory is type-free: it is allowed to
onsider expressions like FF , thatis F applied to itself. This will be useful to simulate re
ursion.The other basi
 operation is abstra
tion. If M � M [x℄ is an expression
ontaining (`depending on') x, then �x:M [x℄ denotes the fun
tion x 7! M [x℄.Appli
ation and abstra
tion work together in the following intuitive formula.(�x:2 � x+ 1)3 = 2 � 3 + 1 (= 7):That is, (�x:2 � x + 1)3 denotes the fun
tion x 7! 2 � x + 1 applied to theargument 3 giving 2�3+1 whi
h is 7. In general we have (�x:M [x℄)N =M [N ℄.This last equation is preferably written as(�x:M)N =M [x := N ℄; (�)where [x := N ℄ denotes substitution of N for x. It is remarkable that although(�) is the only essential axiom of the �-
al
ulus, the resulting theory is ratherinvolved.Free and bound variablesAbstra
tion is said to bind the free variable x in M . E.g. we say that �x:yxhas x as bound and y as free variable. Substitution [x := N ℄ is only performedin the free o

urren
es of x:yx(�x:x)[x := N ℄ � yN(�x:x):In
al
ulus there is a similar variable binding. In R ba f(x; y)dx the variable x isbound and y is free. It does not make sense to substitute 7 for x: R ba f(7; y)d7;but substitution for y makes sense: R ba f(x; 7)dx.For reasons of hygiene it will always be assumed that the bound variablesthat o

ur in a
ertain expression are di�erent from the free ones. This
an beful�lled by renaming bound variables. E.g. �x:x be
omes �y:y. Indeed, theseexpressions a
t the same way:(�x:x)a = a = (�y:y)aand in fa
t they denote the same intended algorithm. Therefore expressionsthat di�er only in the names of bound variables are identi�ed.

8 Introdu
tion to Lambda Cal
ulusFun
tions of more argumentsFun
tions of several arguments
an be obtained by iteration of appli
ation. Theidea is due to S
h�on�nkel (1924) but is often
alled
urrying , after H.B. Currywho introdu
ed it independently. Intuitively, if f(x; y) depends on two argu-ments, one
an de�ne Fx = �y:f(x; y);F = �x:Fx:Then (Fx)y = Fxy = f(x; y): (�)This last equation shows that it is
onvenient to use asso
iation to the left foriterated appli
ation:FM1 � � �Mn denotes (��((FM1)M2) � � �Mn):The equation (�) then be
omes Fxy = f(x; y):Dually, iterated abstra
tion uses asso
iation to the right :�x1 � � � xn:f(x1; : : : ; xn) denotes �x1:(�x2:(� � � (�xn:f(x1; : : : ; xn))��)):Then we have for F de�ned aboveF = �xy:f(x; y)and (�) be
omes (�xy:f(x; y))xy = f(x; y):For n arguments we have(�x1 � � � xn:f(x1; � � � ; xn))x1 � � � xn = f(x1; : : : ; xn)by using n times (�). This last equation be
omes in
onvenient ve
tor notation(�~x:f [~x℄)~x = f [~x℄;more generally one has (�~x:f [~x℄) ~N = f [~N ℄:

Chapter 2ConversionIn this
hapter, the �-
al
ulus will be introdu
ed formally.2.1. Definition. The set of �-terms (notation �) is built up from an in�niteset of variables V = fv; v0; v00; : : :g using appli
ation and (fun
tion) abstra
tion.x 2 V) x 2 �;M;N 2 �) (MN) 2 �;M 2 �; x 2 V) (�xM) 2 �:In BN-form this isvariable ::= `v' j variable `0'�-term ::= variable j `(' �-term �-term `)' j `(�' variable �-term `)'2.2. Example. The following are �-terms.v0;(v0v);(�v(v0v));((�v(v0v))v00);(((�v(�v0(v0v)))v00)v000):2.3. Convention. (i) x; y; z; : : : denote arbitrary variables; M;N;L; : : : de-note arbitrary �-terms. Outermost parentheses are not written.(ii) M � N denotes that M and N are the same term or
an be obtainedfrom ea
h other by renaming bound variables. E.g.(�xy)z � (�xy)z;(�xx)z � (�yy)z;(�xx)z 6� z;(�xx)z 6� (�xy)z:(iii) We use the abbreviationsFM1 � � �Mn � (��((FM1)M2) � � �Mn)9

10 Introdu
tion to Lambda Cal
ulusand �x1 � � � xn:M � �x1(�x2(� � � (�xn(M))��)):The terms in Example 2.2 now may be written as follows.y;yx;�x:yx;(�x:yx)z;(�xy:yx)zw:Note that �x:yx is (�x(yx)) and not ((�x:y)x).2.4. Definition. (i) The set of free variables of M , notation FV(M), is de-�ned indu
tively as follows.FV(x) = fxg;FV(MN) = FV(M) [FV(N);FV(�x:M) = FV(M)� fxg:A variable in M is bound if it is not free. Note that a variable is bound if ito

urs under the s
ope of a �.(ii) M is a
losed �-term (or
ombinator) if FV(M) = ;. The set of
losed�-terms is denoted by �o.(iii) The result of substituting N for the free o

uren
es of x in M , notationM [x := N ℄, is de�ned as follows.x[x := N ℄ � N ;y[x := N ℄ � y; if x 6� y;(M1M2)[x := N ℄ � (M1[x := N ℄)(M2[x := N ℄);(�y:M1)[x := N ℄ � �y:(M1[x := N ℄):2.5. Example. Consider the �-term�xy:xyz:Then x and y are bound variables and z is a free variable. The term �xy:xxyis
losed.2.6. Variable
onvention. If M1; : : : ;Mn o

ur in a
ertain mathemati
al
ontext (e.g. de�nition, proof), then in these terms all bound variables are
hosen to be di�erent from the free variables.Note that in the fourth
lause of De�nition 2.4 (iii) it is not needed to say`provided that y 6� x and y =2 FV(N)'. By the variable
onvention this is the
ase.Now we
an introdu
e the �-
al
ulus as formal theory.

Conversion 112.7. Definition. (i) The prin
ipal axiom s
heme of the �-
al
ulus is(�x:M)N =M [x := N ℄ (�)for all M;N 2 �.(ii) There are also the `logi
al' axioms and rules.Equality: M =M ;M = N) N =M ;M = N;N = L) M = L:Compatibility rules: M =M 0) MZ =M 0Z;M =M 0) ZM = ZM 0;M =M 0) �x:M = �x:M 0: (�)(iii) If M = N is provable in the �-
al
ulus, then we sometimes write � `M = N .As a
onsequen
e of the
ompatibility rules, one
an repla
e (sub)terms byequal terms in any term
ontext:M = N) � � �M � � � = � � �N � � � :For example, (�y:yy)x = xx, so� ` �x:x((�y:yy)x)x = �x:x(xx)x:2.8. Remark. We have identi�ed terms that di�er only in the names of boundvariables. An alternative is to add to the �-
al
ulus the following axiom s
heme�x:M = �y:M [x := y℄; provided that y does not o

ur in M . (�)We prefer our version of the theory in whi
h the identi�
ations are made onsynta
ti
 level. These identi�
ations are done in our mind and not on paper.For implementations of the �-
al
ulus the ma
hine has to deal with this so
alled �-
onversion. A good way of doing this is provided by the name-freenotation of de Bruijn, see Barendregt (1984), Appendix C.2.9. Lemma. � ` (�x1 � � � xn:M)X1 � � �Xn =M [x1 := X1℄ � � � [xn := Xn℄:Proof. By the axiom (�) we have(�x1:M)X1 =M [x1 := X1℄:By indu
tion on n the result follows. �

12 Introdu
tion to Lambda Cal
ulus2.10. Example (Standard
ombinators). De�ne the
ombinatorsI � �x:x;K � �xy:x;K� � �xy:y;S � �xyz:xz(yz):Then, by Lemma 2.9, we have the following equations.IM = M ;KMN = M ;K�MN = N ;SMNL = ML(NL):Now we
an solve simple equations.2.11. Example. 9G 8X GX = XXX (there exists G 2 � su
h that for allX 2 � one has � ` GX = XX). Indeed, take G � �x:xxx and we are done.Re
ursive equations require a spe
ial te
hnique. The following result pro-vides one way to represent re
ursion in the �-
al
ulus.2.12. Fixedpoint Theorem. (i) 8F 9X FX = X. (This means: for allF 2 � there is an X 2 � su
h that � ` FX = X.)(ii) There is a �xed point
ombinatorY � �f:(�x:f(xx))(�x:f(xx))su
h that 8F F (YF) = YF:Proof. (i) De�ne W � �x:F (xx) and X �WW . ThenX �WW � (�x:F (xx))W = F (WW) � FX:(ii) By the proof of (i). �2.13. Example. (i) 9G 8X GX = SGX. Indeed,8X GX = SGX (Gx = SGx(G = �x:SGx(G = (�gx:Sgx)G(G � Y(�gx:Sgx):Note that one
an also take G � YS.(ii) 9G 8X GX = GG: take G � Y(�gx:gg). (Can you solve this withoutusing Y?)

Conversion 13In the lambda
al
ulus one
an de�ne numerals and represent numeri
 fun
-tions on them.2.14. Definition. (i) F n(M) with F 2 � and n 2 N is de�ned indu
tively asfollows. F 0(M) � M ;F n+1(M) � F (F n(M)):(ii) The Chur
h numerals
0;
1;
2; : : : are de�ned by
n � �fx:fn(x):2.15. Proposition (J.B. Rosser). De�neA+ � �xypq:xp(ypq);A� � �xyz:x(yz);Aexp � �xy:yx:Then one has for all n;m 2 N(i) A+
n
m =
n+m.(ii) A�
n
m =
n�m.(iii) Aexp
n
m =
(nm), ex
ept for m = 0 (Rosser started
ounting from 1).In the proof we need the following.2.16. Lemma. (i) (
nx)m(y) = xn�m(y).(ii) (
n)m(x) =
(nm)(x), for m > 0.Proof. (i) Indu
tion on m. If m = 0, then LHS = y = RHS. Assume (i) is
orre
t for m (Indu
tion Hypothesis: IH). Then(
nx)m+1(y) =
nx((
nx)m(y))=
nx(xn�m(y)) by IH,= xn(xn�m(y))� xn+n�m(y)� xn�(m+1)(y):(ii) Indu
tion on m > 0. If m = 1, then LHS �
nx � RHS. If (ii) is
orre
tfor m, then (
n)m+1(x) =
n((
n)m(x))=
n(
(nm)(x)) by IH,= �y:(
(nm)(x))n(y)= �y:xnm�n(y) by (i),=
(nm+1)x:

14 Introdu
tion to Lambda Cal
ulusProof of the proposition. (i) Exer
ise.(ii) Exer
ise. Use Lemma 2.16 (i).(iii) By Lemma 2.16 (ii) we have for m > 0Aexp
n
m =
m
n= �x:(
n)m(x)= �x:
(nm)x=
(nm);sin
e �x:Mx =M if M � �y:M 0[y℄ and x =2 FV(M). Indeed,�x:Mx � �x:(�y:M 0[y℄)x= �x:M 0[x℄� �y:M 0[y℄� M: �Exer
ises2.1. (i) Rewrite a

ording to oÆ
ial syntaxM1 � y(�x:xy(�zw:yz)):(ii) Rewrite a

ording to the simpli�ed syntaxM2 � �v0(�v00((((�vv)v0)v00)((v00(�v000(v0v000)))v00))):2.2. Prove the following substitution lemma. Let x 6� y and x =2 FV(L). ThenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄:2.3. (i) Prove, using Exer
ise 2.2,� `M1 =M2) � `M1[x := N ℄ =M2[x := N ℄:(ii) Show� `M1 =M2&� ` N1 = N2) � `M1[x := N1℄ =M2[x := N2℄:2.4. Prove Proposition 2.15 (i), (ii).2.5. Let B � �xyz:x(yz). SimplifyM � BXY Z, that is �nd a `simple' term N su
hthat � `M = N .2.6. Simplify the following terms.(i) M � (�xyz:zyx)aa(�pq:q);(ii) M � (�yz:zy)((�x:xxx)(�x:xxx))(�w:I);(iii) M � SKSKSK.2.7. Show that(i) � ` KI = K�;(ii) � ` SKK = I.2.8. (i) Write down a
losed �-term F 2 � su
h that for all M;N 2 �FMN =M(NM)N:

Conversion 15(ii) Constru
t a �-term F su
h that for all M;N;L 2 �oFMNL = N(�x:M)(�yz:yLM):2.9. Find
losed terms F su
h that(i) Fx = xI;(ii) Fxy = xIy.2.10. Find
losed terms F su
h that(i) Fx = F . This term
an be
alled the `eater' and is often denoted by K1;(ii) Fx = xF ;(iii) F IKK = FK.2.11. Show 8C[; ℄ 9F 8~x F~x = C[F; ~x℄and take another look at the exer
ises 2.8, 2.9 and 2.10.2.12. Let P;Q 2 �. P and Q are in
ompatible, notation P ℄ Q, if � extended withP = Q as axiom proves every equation between �-terms, i.e. for all M;N 2 �one has �+ (P = Q) ` M = N . In this
ase one says that � + (P = Q) isin
onsistent .(i) Prove that for P;Q 2 �P ℄ Q , �+ (P = Q) ` true = false;where true � K, false � K�.(ii) Show that I ℄ K.(iii) Find a �-term F su
h that F I = x and FK = y.(iv) Show that K ℄ S.2.13. Write down a grammar in BN-form that generates the �-terms exa
tly in theway they are written in Convention 2.3.

Chapter 3The Power of LambdaWe have seen that the fun
tion plus, times and exponentiation on N
an berepresented in the �-
al
ulus using Chur
h's numerals. We will now show thatall
omputable (re
ursive) fun
tions
an be represented in the �-
al
ulus. Inorder to do this we will use �rst a di�erent system of numerals.Truth values and a
onditional
an be represented in the �-
al
ulus.3.1. Definition. (i) true � K, false � K�.(ii) If B is
onsidered as a Boolean, i.e. a term that is either true or false,then if B then P else Q
an be represented by BPQ:3.2. Definition (Pairing). For M;N 2 � write[M;N ℄ � �z:if z then M else N (� �z:zMN):Then [M;N ℄true = M;[M;N ℄false = N;and hen
e [M;N ℄
an serve as an ordered pair.We
an use this pairing
onstru
tion for an alternative representation ofnatural numbers due to Barendregt (1976).3.3. Definition. For ea
h n 2 N, the numeral pnq is de�ned indu
tively asfollows. p0q � I;pn+ 1q � [false; pnq℄:17

18 Introdu
tion to Lambda Cal
ulus3.4. Lemma (Su

essor, prede
essor, test for zero). There exist
ombinators S+,P�, and Zero su
h that S+pnq = pn+ 1q;P�pn+ 1q = pnq;Zerop0q = true;Zeropn+ 1q = false:Proof. Take S+ � �x:[false; x℄;P� � �x:x false;Zero � �x:x true: �3.5. Definition (Lambda de�nability). (i) A numeri
 fun
tion is a map' : Np ! Nfor some p. In this
ase ' is
alled p-ary.(ii) A numeri
 p-ary fun
tion ' is
alled �-de�nable if for some
ombinatorF Fpn1q � � � pnpq = p'(n1; : : : ; np)q (�)for all n1; : : : ; np 2 N. If (�) holds, then ' is said to be �-de�ned by F .3.6. Definition. The initial fun
tions are the numeri
 fun
tions Uni , S+, Zde�ned by Uni (x1; : : : ; xn) = xi; (1 � i � n);S+(n) = n+ 1;Z(n) = 0:Let P(n) be a numeri
 relation. As usual�m[P (m)℄denotes the least number m su
h that P (m) holds if there is su
h a number;otherwise it is unde�ned.3.7. Definition. Let A be a
lass of numeri
 fun
tions.(i) A is
losed under
omposition if for all ' de�ned by'(~n) = �(1(~n); : : : ; m(~n))with �; 1; : : : ; m 2 A, one has ' 2 A.(ii) A is
losed under primitive re
ursion if for all ' de�ned by'(0; ~n) = �(~n);'(k + 1; ~n) = ('(k; ~n); k; ~n)with �; 2 A, one has ' 2 A.

The Power of Lambda 19(iii) A is
losed under minimalization if for all ' de�ned by'(~n) = �m[�(~n;m) = 0℄with � 2 A su
h that 8~n 9m �(~n;m) = 0;one has ' 2 A.3.8. Definition. The
lass R of re
ursive fun
tions is the smallest
lass ofnumeri
 fun
tions that
ontains all initial fun
tions and is
losed under
ompo-sition, primitive re
ursion and minimalization.So R is an indu
tively de�ned
lass. The proof that all re
ursive fun
tionsare �-de�nable is in fa
t by a
orresponding indu
tion argument. The result isoriginally due to Kleene (1936).3.9. Lemma. The initial fun
tions are �-de�nable.Proof. Take as de�ning termsUni � �x1 � � � xn:xi;S+ � �x:[false; x℄ (see Lemma 3.4)Z � �x:p0q: �3.10. Lemma. The �-de�nable fun
tions are
losed under
omposition.Proof. Let �; 1; : : : ; m be �-de�ned by G;H1; : : : ;Hm respe
tively. Then'(~n) = �(1(~n); : : : ; m(~n))is �-de�ned by F � �~x:G(H1~x) � � � (Hm~x): �As to primitive re
ursion, let us �rst
onsider an example. The additionfun
tion
an be spe
i�ed as follows.Add(0; y) = y;Add(x+ 1; y) = 1 + Add(x; y) = S+(Add(x; y)):An intuitive way to
ompute Add(m;n) us the following.Test whether m = 0.If yes: give output n;if no:
ompute Add(m� 1; n) and give its su

essor as output.Therefore we want a term Add su
h thatAddxy = if Zerox then y else S+(Add(P�x)y):This equation
an be solved using the �xedpoint
ombinator: takeAdd � Y(�axy:if Zero x then y else S+(a(P�x)y)):The general
ase is treated as follows.

20 Introdu
tion to Lambda Cal
ulus3.11. Lemma. The �-de�nable fun
tions are
losed under primitive re
ursion.Proof. Let ' be de�ned by'(0; ~n) = �(~n);'(k + 1; ~n) = ('(k; ~n); k; ~n);where �; are �-de�ned by G;H respe
tively. Now we want a term F su
hthat Fx~y = if Zero x then G~y else H(F (P�x)~y)(P�x)~y� D(F; x; ~y), say.It is suÆ
ient to �nd an F su
h thatF = �x~y:D(F; x; ~y)= (�fx~y:D(f; x; ~y))F:Now su
h an F
an be found by the Fixedpoint Theorem and we are done. �3.12. Lemma. The �-de�nable fun
tions are
losed under minimalization.Proof. Let ' be de�ned by'(~n) = �m[�(~n;m) = 0℄;where � is �-de�ned by G. Again by the Fixedpoint Theorem there is a termH su
h that H~xy = if Zero(G~xy) then y else H~x(S+y)= (�h~xy:E(h; ~x; y))H~xy, say.Set F � �~x:H~xp0q. Then F �-de�nes ':Fp~nq = Hp~nqp0q= p0q if Gp~nqp0q = p0q= Hp~nqp1q else= p1q if Gp~nqp1q = p0q= Hp~nqp2q else= p2q if . . .= : : : �3.13. Theorem. All re
ursive fun
tions are �-de�nable.Proof. By the lemmas 3.9{3.12. �The
onverse also holds. So for numeri
 fun
tions we have ' is re
ursive i�' is �-de�nable. Moreover also for partial fun
tions a notion of �-de�nabilityexists. If is a partial numeri
 fun
tion, then we have is partial re
ursive , is �-de�nable.

The Power of Lambda 213.14. Theorem. With respe
t to the Chur
h numerals
n all re
ursive fun
-tions
an be �-de�ned.Proof. De�ne S+
 � �xyz:y(xyz);P�
 � �xyz:x(�pq:q(py))(Kz)I1;Zero
 � �x:x(Kfalse)true:Then these terms represent the su

essor, prede
essor and test for zero. Thenas before all re
ursive fun
tions
an be �-de�ned. �An alternative proof uses `translators' between the numerals pnq and
n.3.15. Proposition. There exist terms T , T�1 su
h that for all nT
n = pnq;T�1pnq =
n:Proof. Constru
t T , T�1 su
h thatT � �x:xS+p0q:T�1 = �x:if Zerox then
0 else S+
 (T�1(P�x)): �3.16. Corollary (Se
ond proof of Theorem 3.14). Let ' be a re
ursive fun
-tion (of arity 2 say). Let F represent ' with respe
t to the numerals pnq.De�ne F
 � �xy:T�1(F (Tx)(Ty)):Then F
 represents ' with respe
t to the Chur
h numerals. �The representation of pairs in the lambda
al
ulus
an also be used to solvemultiple �xedpoint equations.3.17. Multiple Fixedpoint Theorem. Let F1; : : : ; Fn be �-terms. Then we
an �nd X1; : : : ;Xn su
h thatX1 = F1X1 � � �Xn;...Xn = FnX1 � � �Xn:Observe that for n = 1 this is the ordinary Fixedpoint Theorem (2.12).Proof. We treat the
ase n = 2. So we wantX1 = F1X1X2;X2 = F2X1X2:1Term found by J. Velmans.

22 Introdu
tion to Lambda Cal
ulusThe tri
k is to
onstru
t X1 and X2 simultaneously, as a pair. By the ordinaryFixedpoint Theorem we
an �nd an X su
h thatX = [F1(Xtrue)(Xfalse); F2(Xtrue)(Xfalse)℄:Now de�ne X1 � Xtrue, X2 � Xfalse. Then the result follows. This
an begeneralized to arbitrary n. �3.18. Example. There exist G;H 2 � su
h thatGxy = Hy(Kx);Hx = G(xx)(S(H(xx))):Indeed, we
an repla
e the above equations byG = �xy:Hy(Kx);H = �x:G(xx)(S(H(xx)));and apply the Multiple Fixedpoint Theorem with F1 � �ghxy:hy(Kx) andF2 � �ghx:g(xx)(S(h(xx))).Exer
ises3.1. (i) Find a �-term Mult su
h that for all m;n 2 NMultpnqpmq = pn �mq:(ii) Find a �-term Fa
 su
h that for all n 2 NFa
pnq = pn!q:3.2. The simple A
kermann fun
tion ' is de�ned as follows.'(0; n) = n+ 1;'(m+ 1; 0) = '(m; 1);'(m+ 1; n+ 1) = '(m;'(m + 1; n)):Find a �-term F that �-de�nes '.3.3. The �-terms Cons, Head and Tail are de�ned byCons � �xy:[x; y℄;Head � �x:xK;Tail � �x:xK�:Find �-terms nil and Null su
h thatNull nil = true;Null(Consxy) = false:Give a representation of lists in �-terms and �nd a �-term that de�nes Append,where Append : Lists� Lists! Lists.3.4. Constru
t �-terms M0;M1; : : : su
h that for all n one hasM0 = x;Mn+1 = Mn+2Mn:3.5. Verify that P�
 (see the �rst proof of Theorem 3.14) indeed �-de�nes the pre-de
essor fun
tion with respe
t to the Chur
h numerals.

Chapter 4Redu
tionThere is a
ertain asymmetry in the basi
 s
heme (�). The statement(�x:x2 + 1)3 = 10
an be interpreted as `10 is the result of
omputing (�x:x2 + 1)3', but not vi
eversa. This
omputational aspe
t will be expressed by writing(�x:x2 + 1)3!! 10whi
h reads `(�x:x2 + 1)3 redu
es to 10'.Apart from this
on
eptual aspe
t, redu
tion is also useful for an analysisof
onvertibility. The Chur
h-Rosser theorem says that if two terms are
on-vertible, then there is a term to whi
h they both redu
e. In many
ases thein
onvertibility of two terms
an be proved by showing that they do not redu
eto a
ommon term.4.1. Definition. (i) A binary relation R on � is
alled
ompatible (with theoperations) if M R N) (ZM) R (ZN);(MZ) R (NZ) and(�x:M) R (�x:N):(ii) A
ongruen
e relation on � is a
ompatible equivalen
e relation.(iii) A redu
tion relation on � is a
ompatible, re
exive and transitive rela-tion.4.2. Definition. The binary relations !�, !!� and =� on � are de�ned in-du
tively as follows.(i) 1. (�x:M)N !� M [x := N ℄;2. M !� N) ZM !� ZN , MZ !� NZ and �x:M !� �x:N .(ii) 1. M !!� M ;2. M !� N) M !!� N ;3. M !!� N;N !!� L) M !!� L.23

24 Introdu
tion to Lambda Cal
ulus(iii) 1. M !!� N) M =� N ;2. M =� N) N =� M ;3. M =� N;N =� L) M =�L.These relations are pronoun
ed as follows.M !!� N : M�-redu
es to N ;M !� N : M�-redu
es to N in one step;M =� N : M is �-
onvertible to N:By de�nition !� is
ompatible, !!� is a redu
tion relation and =� is a
on-gruen
e relation.4.3. Example. (i) De�ne ! � �x:xx;
 � !!:Then
!�
.(ii) KI
!!� I.Intuitively, M =� N if M is
onne
ted to N via !�-arrows (disregardingthe dire
tions of these). In a pi
ture this looks as follows.M ���R 	�� ��R� � � � N��R 	�� ��R 	�� ��R 	��� � � ���R 	���4.4. Example. KI
 =� II. This is demonstrated by the following redu
tions.KI
��R(�y:I)
 II��R 	��I4.5. Proposition. M =� N , � `M = N .Proof. By an easy indu
tion. �4.6. Definition. (i) A �-redex is a term of the form (�x:M)N . In this
aseM [x := N ℄ is its
ontra
tum.(ii) A �-term M is a �-normal form (�-nf) if it does not have a �-redex assubexpression.(iii) A term M has a �-normal form if M =� N and N is a �-nf, for someN .

Redu
tion 254.7. Example. (�x:xx)y is not a �-nf, but has as �-nf the term yy.An immediate property of nf's is the following.4.8. Lemma. Let M be a �-nf. ThenM !!� N) N �M:Proof. This is true if !!� is repla
ed by !�. Then the result follows bytransitivity. �4.9. Chur
h-Rosser Theorem. If M !!� N1, M !!� N2, then for some N3one has N1 !!� N3 and N2 !!� N3; in diagramM		������ ������RRN1 N2..............RR 	N3The proof is postponed until 4.19.4.10. Corollary. If M =� N , then there is an L su
h that M !!� L andN !!� L.An intuitive proof of this fa
t pro
eeds by a tiling pro
edure: given an arrowpath showing M =� N , apply the Chur
h-Rosser property repeatedly in orderto �nd a
ommon redu
t. For the example given above this looks as follows.M ���R 	�� ��R� � � � N��R 	�� ��R 	�� ��R 	��� � � �..............RR ��R 	��
	

.............�	�RR �This is made pre
ise below.

26 Introdu
tion to Lambda Cal
ulusProof. Indu
tion on the generation of =�.Case 1. M =� N be
ause M !!� N . Take L � N .Case 2. M =� N be
ause N =� M . By the IH there is a
ommon �-redu
tL1 of N , M . Take L � L1.Case 3. M =� N be
ause M =� N 0, N 0 =� N . ThenM (IH) N 0 (IH) N����RR 		���� ����RR 		����L1 (CR) L2..........RR 	L �4.11. Corollary. (i) If M has N as �-nf, then M !!� N .(ii) A �-term has at most one �-nf.Proof. (i) Suppose M =� N with N in �-nf. By Corollary 4.10 M !!� Land N !!� L for some L. But then N � L, by Lemma 4.8, so M !!� N .(ii) Suppose M has �-nf's N1, N2. Then N1 =� N2 (=� M). By Corollary4.10 N1 !!� L, N2 !!� L for some L. But then N1 � L � N2 by Lemma4.8. �4.12. Some
onsequen
es. (i) The �-
al
ulus is
onsistent, i.e. � 6` true =false. Otherwise true =� false by Proposition 4.5, whi
h is impossible byCorollary 4.11 sin
e true and false are distin
t �-nf's. This is a synta
ti

onsisten
y proof.(ii)
 has no �-nf. Otherwise
!!� N with N in �-nf. But
 only redu
esto itself and is not in �-nf.(iii) In order to �nd the �-nf of a term M (if it exists), the various subex-pressions of M may be redu
ed in di�erent orders. By Corollary 4.11 (ii) the�-nf is unique.The proof of the Chur
h-Rosser theorem o

upies 4.13{4.19. The idea ofthe proof is as follows. In order to prove Theorem 4.9, it is suÆ
ient to showthe Strip Lemma: M	��� �� ���� �����RRN1�RR N2	 �.....N3In order to prove this lemma, let M !� N1 be a one step redu
tion resultingfrom
hanging a redex R in M in its
ontra
tum R0 in N1. If one makes a

Redu
tion 27bookkeeping of what happens with R during the redu
tion M !!� N2, then byredu
ing all `residuals' of R in N2 the term N3
an be found. In order to do thene
essary bookkeeping an extended set � � � and redu
tion � is introdu
ed.The underlining serves as a `tra
ing isotope'.4.13. Definition (Underlining). (i) � is the set of terms de�ned indu
tivelyas follows. x 2 V) x 2 �;M;N 2 �) (MN) 2 �;M 2 �; x 2 V) (�x:M) 2 �;M;N 2 �; x 2 V) ((�x:M)N) 2 �:(ii) The underlined redu
tion relations !� (one step) and !!� are de�nedstarting with the
ontra
tion rules(�x:M)N !� M [x := N ℄;(�x:M)N !� M [x := N ℄:Then!� is extended in order to be
ome a
ompatible relation (also with respe
tto �-abstra
tion). Moreover, !!� is the transitive re
exive
losure of !�.(iii) If M 2 �, then jM j 2 � is obtained from M by leaving out all underlin-ings. E.g. j(�x:x)((�x:x)(�x:x))j � I(II).4.14. Definition. The map ' : �! � is de�ned indu
tively as follows.'(x) � x;'(MN) � '(M)'(N);'(�x:M) � �x:'(M);'((�x:M)N) � '(M)[x := '(N)℄:In other words, '
ontra
ts all redexes that are underlined, from the inside tothe outside.Notation. If jM j � N or '(M) � N , then this will be denoted byM j j- N or M '- N:4.15. Lemma. M 0 �������������� �����������������-- N 0j j? ?j jM � -- N M 0; N 0 2 �;M;N 2 �:

28 Introdu
tion to Lambda Cal
ulusProof. First suppose M !� N . Then N is obtained by
ontra
ting a redexin M and N 0
an be obtained by
ontra
ting the
orresponding redex in M 0.The general statement follows by transitivity. �4.16. Lemma. (i) Let M;N 2 �. Then'(M [x := N ℄) � '(M)[x := '(N)℄:(ii) M � -- N'? ?''(M) ������������ ���������������-- '(N) M;N 2 �:
Proof. (i) By indu
tion on the stru
ture ofM , using the Substitution Lemma(see Exer
ise 2.2) in
ase M � (�y:P)Q. The
ondition of that lemma may beassumed to hold by our
onvention about free variables.(ii) By indu
tion on the generation of !!� , using (i). �4.17. Lemma. M	���j j ��� ��� '���RN ��������������� ������������������-- L M 2 �;N; L 2 �:Proof. By indu
tion on the stru
ture of M. �4.18. Strip lemma. M	��� �� ���� �����RRN1�RR N2	 �.....N3

M;N1; N2; N3 2 �:
Proof. Let N1 be the result of
ontra
ting the redex o

urren
e R � (�x:P)QinM . LetM 0 2 � be obtained fromM by repla
ing R by R0 � (�x:P)Q. Then

Redu
tion 29jM 0j � M and '(M 0) � N1. By the lemmas 4.15, 4.16 and 4.17 we
an ere
tthe diagram M	��� �� HHHHHHHH �HHHHHHHHjj
I�� j j��N1 � ' M 0........................�jj

..jj� N2	� I�� j j��N3 � ' N 02whi
h proves the Strip Lemma. �4.19. Proof of the Chur
h-Rosser Theorem. If M !!� N1, then M �M1 !� M2 !� � � � !� Mn � N1. Hen
e the CR property follows from theStrip Lemma and a simple diagram
hase:M	�� ������������RR
M1	�� ..RR

�.RR
�	��N1 N2..RR

	�	�. . .�	� �4.20. Definition. For M 2 � the redu
tion graph of M , notation G�(M), isthe dire
ted multigraph with verti
es fN jM !!� Ng and dire
ted by !�.

30 Introdu
tion to Lambda Cal
ulus4.21. Example. G�(I(Ix)) is
x

I x()I

xI

sometimes simply drawn as
It
an happen that a term M has a nf, but at the same time an in�niteredu
tion path. Let
 � (�x:xx)(�x:xx). Then
 !
 ! � � � so KI
 !KI
 ! � � �, and KI
 !! I. Therefore a so
alled strategy is ne
essary inorder to �nd the normal form. We state the following theorem; for a proof seeBarendregt (1984), Theorem 13.2.2.4.22. Normalization Theorem. If M has a normal form, then iterated
on-tra
tion of the leftmost redex leads to that normal form.In other words: the leftmost redu
tion strategy is normalizing . This fa
t
an be used to �nd the normal form of a term, or to prove that a
ertain termhas no normal form.4.23. Example. K
I has an in�nite leftmost redu
tion path, viz.K
I!� (�y:
)I!�
!�
!� � � � ;and hen
e does not have a normal form.The fun
tional language (pure) Lisp uses an eager or appli
ative evaluationstrategy, i.e. whenever an expression of the form FA has to be evaluated, A isredu
ed to normal form �rst, before `
alling' F . In the �-
al
ulus this strat-egy is not normalizing as is shown by the two redu
tion paths for KI
 above.There is, however, a variant of the lambda
al
ulus,
alled the �I-
al
ulus, inwhi
h the eager evaluation strategy is normalizing. In this �I-
al
ulus termslike K, `throwing away'
 in the redu
tion KI
 !! I do not exist. The `ordi-nary' �-
al
ulus is sometimes referred to as �K-
al
ulus; see Barendregt (1984),Chapter 9.Remember the �xedpoint
ombinator Y. For ea
h F 2 � one has YF =�F (YF), but neither YF !!� F (YF) nor F (YF) !!� YF . In order to solve

Redu
tion 31redu
tion equations one
an work with A.M. Turing's �xedpoint
ombinator,whi
h has a di�erent redu
tion behaviour.4.24. Definition. Turing's �xedpoint
ombinator � is de�ned by settingA � �xy:y(xxy);� � AA:4.25. Proposition. For all F 2 � one has�F !!� F (�F):Proof. �F � AAF!� (�y:y(AAy))F!� F (AAF)� F (�F): �4.26. Example. 9G 8X GX !! X(XG). Indeed,8X GX !! X(XG) (G!! �x:x(xG)(G!! (�gx:x(xg))G(G � �(�gx:x(xg)):Also the Multiple Fixedpoint Theorem has a `redu
ing' variant.4.27. Theorem. Let F1; : : : ; Fn be �-terms. Then we
an �nd X1; : : : ;Xn su
hthat X1 !! F1X1 � � �Xn;...Xn !! FnX1 � � �Xn:Proof. As for the equational Multiple Fixedpoint Theorem 3.17, but nowusing �. �Exer
ises4.1. Show 8M 9N [N in �-nf and N I!!� M ℄.4.2. Constru
t four terms M with G�(M) respe
tively as follows.

32 Introdu
tion to Lambda Cal
ulus
4.3. Show that there is no F 2 � su
h that for all M;N 2 �F (MN) =M:4.4.* LetM � AAx with A � �axz:z(aax). Show that G�(M)
ontains as subgraphsan n-dimensional
ube for every n 2 N.4.5. (A. Visser)(i) Show that there is only one redex R su
h that G�(R) is as follows.(ii) Show that there is no M 2 � with G�(M) is

[Hint. Consider the relative positions of redexes.℄4.6.* (C. B�ohm) Examine G�(M) with M equal to(i) HIH , H � �xy:x(�z:yzy)x.(ii) LLI, L � �xy:x(yy)x.(iii) QIQ, Q � �xy:xyIxy.4.7.* (J.W. Klop) Extend the �-
al
ulus with two
onstants Æ, ". The redu
tionrules are extended to in
lude ÆMM ! ". Show that the resulting system isnot Chur
h-Rosser.[Hint. De�ne terms C;D su
h thatCx !! Æx(Cx)D !! CDThen D !! " and D !! C" in the extended redu
tion system, but there is no
ommon redu
t.℄4.8. Show that the term M � AAx with A � �axz:z(aax) does not have a normalform.4.9. (i) Show � 6`WWW = !3!3, with W � �xy:xyy and !3 � �x:xxx.(ii) Show � 6` Bx = By with Bz � AzAz and Az � �p:ppz.4.10. Draw G�(M) for M equal to:(i) WWW , W � �xy:xyy.(ii) !!, ! � �x:xx.(iii) !3!3, !3 � �x:xxx.(iv) (�x:Ixx)(�x:Ixx).(v) (�x:I(xx))(�x:I(xx)).(vi) II(III).4.11. The length of a term is its number of symbols times 0:5
m. Write down a�-term of length < 30
m with normal form > 101010 light year.[Hint. Use Proposition 2.15 (ii). The speed of light is
 = 3� 1010
m/s.℄

Chapter 5Type AssignmentThe lambda
al
ulus as treated so far is usually referred to as a type-free theory.This is so, be
ause every expression (
onsidered as a fun
tion) may be applied toevery other expression (
onsidered as an argument). For example, the identityfun
tion I � �x:x may be applied to any argument x to give as result that samex. In parti
ular I may be applied to itself.There are also typed versions of the lambda
al
ulus. These are introdu
edessentially in Curry (1934) (for the so
alled Combinatory Logi
, a variant ofthe lambda
al
ulus) and in Chur
h (1940). Types are usually obje
ts of asynta
ti
 nature and may be assigned to lambda terms. If M is su
h a termand a type A is assigned to M , then we say `M has type A' or `M in A'; thedenotation used for this is M : A. For example in some typed systems one hasI : (A!A), that is, the identity I may get as type A!A. This means that ifx being an argument of I is of type A, then also the value Ix is of type A. Ingeneral, A!B is the type of fun
tions from A to B.Although the analogy is not perfe
t, the type assigned to a term may be
ompared to the dimension of a physi
al entity. These dimensions prevent usfrom wrong operations like adding 3 volt to 2 amp�ere. In a similar way typesassigned to lambda terms provide a partial spe
i�
ation of the algorithms thatare represented and are useful for showing partial
orre
tness.Types may also be used to improve the eÆ
ien
y of
ompilation of termsrepresenting fun
tional algorithms. If for example it is known (by looking attypes) that a subexpression of a term (representing a funtional program) ispurely arithmeti
al, then fast evaluation is possible. This is be
ause the ex-pression then
an be exe
uted by the alu of the ma
hine and not in the slowerway in whi
h symboli
 expressions are evaluated in general.The two original papers of Curry and Chur
h introdu
ing typed versions ofthe lambda
al
ulus give rise to two di�erent families of systems. In the typedlambda
al
uli �a la Curry terms are those of the type-free theory. Ea
h termhas a set of possible types. This set may be empty, be a singleton or
onsistof several (possibly in�nitely many) elements. In the systems �a la Chur
h theterms are annotated versions of the type-free terms. Ea
h term has (up to anequivalen
e relation) a unique type that is usually derivable from the way theterm is annotated.The Curry and Chur
h approa
hes to typed lambda
al
ulus
orrespond to33

34 Introdu
tion to Lambda Cal
ulustwo paradigms in programming. In the �rst of these a program may be writtenwithout typing at all. Then a
ompiler should
he
k whether a type
an beassigned to the program. This will be the
ase if the program is
orre
t. Awell-known example of su
h a language is ML, see Milner (1984). The style oftyping is
alled impli
it typing . The other paradigm in programming is
alledexpli
it typing and
orresponds to the Chur
h version of typed lambda
al
uli.Here a program should be written together with its type. For these languagestype-
he
king is usually easier, sin
e no types have to be
onstru
ted. Examplesof su
h languages are Algol 68 and Pas
al . Some authors designate the Currysystems as `lambda
al
uli with type assignment ' and the Chur
h systems as`systems of typed lambda
al
ulus'.Within ea
h of the two paradigms there are several versions of typed lambda
al
ulus. In many important systems, espe
ially those �a la Chur
h, it is the
asethat terms that do have a type always possess a normal form. By the unsolv-ability of the halting problem this implies that not all
omputable fun
tions
anbe represented by a typed term, see Barendregt (1990), Theorem 4.2.15. Thisis not so bad as it sounds, be
ause in order to �nd su
h
omputable fun
tionsthat
annot be represented, one has to stand on one's head. For example in�2, the se
ond order typed lambda
al
ulus, only those partial re
ursive fun
-tions
annot be represented that happen to be total, but not provably so inmathemati
al analysis (se
ond order arithmeti
).Considering terms and types as programs and their spe
i�
ations is not theonly possibility. A type A
an also be viewed as a proposition and a termM inAas a proof of this proposition. This so
alled propositions-as-types interpretationis independently due to de Bruijn (1970) and Howard (1980) (both paperswere
on
eived in 1968). Hints in this dire
tion were given in Curry and Feys(1958) and in L�au
hli (1970). Several systems of proof
he
king are basedon this interpretation of propositions-as-types and of proofs-as-terms. See e.g.de Bruijn (1980) for a survey of the so
alled automath proof
he
king system.Normalization of terms
orresponds in the formulas-as-types interpretation tonormalisation of proofs in the sense of Prawitz (1965). Normal proofs oftengive useful proof theoreti
 information, see e.g. S
hwi
htenberg (1977).In this se
tion a typed lambda
al
ulus will be introdu
ed in the style ofCurry. For more information, see Barendregt (1992).The system �!-CurryOriginally the impli
it typing paradigm was introdu
ed in Curry (1934) for thetheory of
ombinators. In Curry and Feys (1958) and Curry et al. (1972) thetheory was modi�ed in a natural way to the lambda
al
ulus assigning elementsof a given set T of types to type free lambda terms. For this reason these
al
uli�a la Curry are sometimes
alled systems of type assignment . If the type � 2 Tis assigned to the term M 2 � one writes `M : �, sometimes with a subs
riptunder ` to denote the parti
ular system. Usually a set of assumptions � isneeded to derive a type assignment and one writes � ` M : � (pronoun
e thisas `� yields M in �'). A parti
ular Curry type assignment system depends ontwo parameters, the set T and the rules of type assignment. As an example we

Type Assignment 35now introdu
e the system �!-Curry.5.1. Definition. The set of types of �!, notation Type(�!), is indu
tivelyde�ned as follows. We write T = Type(�!). Let V = f�; �0; : : :g be a set oftype variables. It will be
onvenient to allow type
onstants for basi
 types su
has Nat, Bool. Let B be su
h a
olle
tion. Then� 2 V) � 2 T;B 2 B) B 2 T;�; � 2 T) (�!�) 2 T (fun
tion spa
e types).For su
h de�nitions it is
onvenient to use the following abstra
t syntax toform T. T = V j B j T!Twith V = � j V0 (type variables).Notation. (i) If �1; : : : ; �n 2 T then�1!�2!� � �!�nstands for (�1!(�2!� � �!(�n�1!�n)��));that is, we use asso
iation to the right.(ii) �; �;
; : : : denote arbitrary type variables.5.2. Definition. (i) A statement is of the formM : � withM 2 � and � 2 T.This statement is pronoun
ed as `M in �'. The type � is the predi
ate and theterm M is the subje
t of the statement.(ii) A basis is a set of statements with only distin
t (term) variables assubje
ts.5.3. Definition. Type derivations in the system �! are built up from as-sumptions x:�, using the following inferen
e rules.M : �!� N : �MN : � x : ����M : ��x:M : �!�5.4. Definition. (i) A statement M : � is derivable from a basis �, notation� `M : �(or � `�! M : � if we wish to stress the typing system) if there is a derivationof M : � in whi
h all non-
an
elled assumptions are in �.(ii) We use `M : � as shorthand for ; `M : �.

36 Introdu
tion to Lambda Cal
ulus5.5. Example. (i) Let � 2 T. Then ` �fx:f(fx) : (�!�)!�!�, whi
h isshown by the following derivation.f : �!� (2) f : �!� (2) x : � (1)fx : �f(fx) : � (1)�x:f(fx) : �!� (2)�fx:f(fx) : (�!�)!�!�The indi
es (1) and (2) are bookkeeping devi
es that indi
ate at whi
h appli-
ation of a rule a parti
ular assumption is being
an
elled.(ii) One has ` K : �!�!� for any �; � 2 T, whi
h is demonstrated asfollows. x : � (1)�y:x : �!� (1)�xy:x : �!�!�(iii) Similarly one
an show for all � 2 T` I : �!�:(iv) An example with a non-empty basis is the statementy:� ` Iy : �:Properties of �!Several properties of type assignment in �! are valid. The �rst one analyseshow mu
h of a basis is ne
essary in order to derive a type assignment.5.6. Definition. Let � = fx1:�1; : : : ; xn:�ng be a basis.(i) Write dom(�) = fx1; : : : ; xng and �i = �(xi). That is, � is
onsideredas a partial fun
tion.(ii) Let V0 be a set of variables. Then � � V0 = fx:� j x 2 V0&� = �(x)g.(iii) For �; � 2 T substitution of � for � in � is denoted by �[� := � ℄.5.7. Basis Lemma. Let � be a basis.(i) If �0 � � is another basis, then� `M : �) �0 `M : �:(ii) � `M : �) FV(M) � dom(�).(iii) � `M : �) � � FV(M) `M : �.Proof. (i) By indu
tion on the derivation of M : �. Sin
e su
h proofs willo

ur frequently we will spell it out in this simple situation in order to be shorterlater on.

Type Assignment 37Case 1. M : � is x:� and is element of �. Then also x:� 2 �0 and hen
e�0 `M : �.Case 2. M : � is (M1M2) : � and follows dire
tly from M1 : (�!�) andM2 : � for some � . By the IH one has �0 `M1 : (�!�) and �0 `M2 : � . Hen
e�0 ` (M1M2) : �.Case 3. M : � is (�x:M1) : (�1!�2) and follows dire
tly from �; x : �1 `M1 : �2. By the variable
onvention it may be assumed that the bound variablex does not o

ur in dom(�0). Then �0; x:�1 is also a basis whi
h extends �; x:�1.Therefore by the IH one has �0; x:�1 `M1 : �2 and so �0 ` (�x:M1) : (�1!�2).(ii) By indu
tion on the derivation of M : �. We only treat the
ase thatM : � is (�x:M1) : (�1!�2) and follows dire
tly from �; x:�1 `M1 : �2. Let y 2FV(�x:M1), then y 2 FV(M1) and y 6� x. By the IH one has y 2 dom(�; x:�1)and therefore y 2 dom(�).(iii) By indu
tion on the derivation of M : �. We only treat the
ase thatM : � is (M1M2) : � and follows dire
tly from M1 : (�!�) andM2 : � for some� . By the IH one has � � FV(M1) `M1 : (�!�) and � � FV(M2) `M2 : � . By(i) it follows that � � FV(M1M2) ` M1 : (�!�)and � � FV(M1M2) ` M2 : �and hen
e � � FV(M1M2) ` (M1M2) : �. �The se
ond property analyses how terms of a
ertain form get typed. It isuseful among other things to show that
ertain terms have no types.5.8. Generation Lemma. (i) � ` x : �) (x:�) 2 �:(ii) � `MN : �) 9� [� `M : (�!�)&� ` N : �℄:(iii) � ` �x:M : �) 9�; � [�; x:� `M : � & � � (�!�)℄.Proof. By indu
tion on the stru
ture of derivations. �5.9. Proposition (Typability of subterms). Let M 0 be a subterm of M . Then� `M : �) �0 `M 0 : �0 for some �0 and �0.The moral is: if M has a type, i.e. � ` M : � for some � and �, then everysubterm has a type as well.Proof. By indu
tion on the generation of M . �5.10. Substitution Lemma.(i) � `M : �) �[� := � ℄ `M : �[� := � ℄:(ii) Suppose �; x:� `M : � and � ` N : �. Then � `M [x := N ℄ : � .Proof. (i) By indu
tion on the derivation of M : �.(ii) By indu
tion on the derivation showing �; x:� `M : � . �The following result states that the set of M 2 � having a
ertain type in�! is
losed under redu
tion.5.11. Subje
t Redu
tion Theorem. Suppose M !!� M 0. Then� `M : �) � `M 0 : �:

38 Introdu
tion to Lambda Cal
ulusProof. Indu
tion on the generation of !!� using the Generation Lemma 5.8and the Substitution Lemma 5.10. We treat the prime
ase, namely that M �(�x:P)Q and M 0 � P [x := Q℄. Well, if� ` (�x:P)Q : �then it follows by the Generation Lemma that for some � one has� ` (�x:P) : (�!�) and � ` Q : �:Hen
e on
e more by the Generation Lemma�; x:� ` P : � and � ` Q : �and therefore by the Substitution Lemma� ` P [x := Q℄ : �: �Terms having a type are not
losed under expansion. For example,` I : (�!�); but 6` KI (�x:xx) : (�!�):See Exer
ise 5.1. One even has the following stronger failure of subje
t expan-sion, as is observed in van Bakel (1992).5.12. Observation. There are M;M 0 2 � and �; �0 2 T su
h that M 0 !!� Mand `M : �; `M 0 : �0;but 6`M 0 : �:Proof. TakeM � �xy:y;M 0 � SK, � � �!(�!�) and �0 � (�!�)!(�!�);do Exer
ise 5.1. �All typable terms have a normal form. In fa
t, the so-
alled strong nor-malization property holds: if M is a typable term, then all redu
tions startingfrom M are �nite.De
idability of type assignmentFor the system of type assignment several questions may be asked. Note thatfor � = fx1:�1; : : : ; xn:�ng one has� `M : � , ` (�x1:�1 � � � �xn:�n:M) : (�1!� � �!�n!�);therefore in the following one has taken � = ;. Typi
al questions are(1) Given M and �, does one have `M : �?(2) Given M , does there exist a � su
h that `M : �?(3) Given �, does there exist an M su
h that `M : �?

Type Assignment 39These three problems are
alled type
he
king , typability and inhabitation re-spe
tively and are denoted by M : �?, M : ? and ? : �.Type
he
king and typability are de
idable. This
an be shown using thefollowing result, independently due to Curry (1969), Hindley (1969), and Milner(1978).5.13. Theorem. (i) It is de
idable whether a term is typable in �!.(ii) If a term M is typable in �!, then M has a prin
ipal type s
heme, i.e.a type � su
h that every possible type for M is a substitution instan
e of �.Moreover � is
omputable from M .5.14. Corollary. Type
he
king for �! is de
idable.Proof. In order to
he
k M : � it suÆ
es to verify that M is typable and that� is an instan
e of the prin
ipal type of M . �For example, a prin
ipal type s
heme of K is �!�!�.PolymorphismNote that in �! one has ` I : �!� for all � 2 T:In the polymorphi
 lambda
al
ulus this quanti�
ation
an be internalized bystating ` I : 8�:�!�:The resulting system is the polymorphi
 of se
ond-order lambda
al
ulus dueto Girard (1972) and Reynolds (1974).5.15. Definition. The set of types of �2 (notation T = Type(�2)) is spe
i�edby the syntax T = V j B j T!T j 8V:T:5.16. Definition. The rules of type assignment are those of �!, plusM : 8�:�M : �[� := � ℄ M : �M : 8�:�In the latter rule, the type variable � may not o

ur free in any assumption onwhi
h the premiss M : � depends.5.17. Example. (i) ` I : 8�:�!�.(ii) De�ne Nat � 8�:(�!�)!�!�. Then for the Chur
h numerals
n ��fx:fn(x) we have `
n : Nat.The following is due to Girard (1972).5.18. Theorem. (i) The Subje
t Redu
tion property holds for �2.(ii) �2 is strongly normalizing.Typability in �2 is not de
idable; see Wells (1994).

40 Introdu
tion to Lambda Cal
ulusExer
ises5.1. (i) Give a derivation of ` SK : (�!�)!(�!�):(ii) Give a derivation of ` KI : �!(�!�):(iii) Show that 6` SK : (�!�!�).(iv) Find a
ommon �-redu
t of SK and KI. What is the most general type forthis term?5.2. Show that �x:xx and KI(�x:xx) have no type in �!.5.3. Find the most general types (if they exist) for the following terms.(i) �xy:xyy.(ii) SII.(iii) �xy:y(�z:z(yx)).5.4. Find terms M;N 2 � su
h that the following hold in �!.(i) `M : (�!�)!(�!
)!(�!
).(ii) ` N : (((�!�)!�)!�)!(�!�).5.5. Find types in �2 for the terms in the exer
ises 5.2 and 5.3.

Chapter 6ExtensionsIn Chapter 3 we have seen that all
omputable fun
tions
an be expressedin the lambda
al
ulus. For reasons of eÆ
ien
y, reliability and
onvenien
ethis language will be extended. The set of �-terms � will be extended with
onstants. Some of the
onstants are sele
ted to represent primitive data (su
has numbers) and operations on these (su
h as addition). Some new redu
tionrules (the so
alled Æ-rules) are introdu
ed to express the operational semanti
sof these operations. Even if these
onstants and operations
an be implementedin the lambda
al
ulus, it is worthwhile to have primitive symbols for them.The reason is that in an implementation of the lambda
al
ulus addition of theChur
h numerals runs less eÆ
ient than the usual implementation in hardwareof addition of binary represented numbers. Having numerals and addition asprimitives therefore
reates the possibility to interprete these eÆ
iently.From now on we allow
onstants in �-terms. Let C be a set of
onstants.6.1. Definition. The set of lambda terms with
onstants, notation �(C), isde�ned indu
tively as follows.C 2 C) C 2 �(C);x 2 V) x 2 �(C);M;N 2 �(C)) (MN) 2 �(C);M 2 �(C); x 2 V) (�x:M) 2 �(C):This de�nition given as an abstra
t syntax is as follows.�(C) ::= C j V j �(C) �(C) j �V �(C):6.2. Definition (Æ-redu
tion). Let X � �(C) be a set of
losed normal forms.Usually we take X � C . Let f : Xk!� be an `externally de�ned' fun
tion. Inorder to represent f , a so-
alled Æ-rule may be added to the �-
al
ulus. This isdone as follows.(1) A spe
ial
onstant in C is sele
ted and is given some name, say Æ (= Æf).(2) The following
ontra
tion rules are added to those of the �-
al
ulus:ÆM1 � � �Mk ! f(M1; : : : ;Mk);for M1; : : : ;Mk 2 X. 41

42 Introdu
tion to Lambda Cal
ulusNote that for a given fun
tion f this is not one
ontra
tion rule but in fa
ta rule s
hema. The resulting extension of the �-
al
ulus is
alled �Æ. The
orresponding notion of (one step) redu
tion is denoted by (!�Æ) !!�Æ.So Æ-redu
tion is not an absolute notion, but depends on the
hoi
e of f .6.3. Theorem (G. Mits
hke). Let f be a fun
tion on
losed normal forms.Then the resulting notion of redu
tion !!�Æ satis�es the Chur
h-Rosser prop-erty.Proof. Follows from Theorem 15.3.3 in Barendregt (1984). �The notion of normal form generalises to �Æ-normal form. So does the
on
ept of leftmost redu
tion. The �Æ-normalforms
an be found by a leftmostredu
tion (notation !!`�Æ).6.4. Theorem. If M !!�Æ N and N is in �Æ-nf, then M !!`�Æ N .Proof. Analogous to the proof of the theorem for �-normal forms (4.22). �6.5. Example. One of the �rst versions of a Æ-rule is in Chur
h (1941). HereX is the set of all
losed normal forms and for M;N 2 X we haveÆCMN ! true; if M � N ;ÆCMN ! false; if M 6� N .Another possible set of Æ-rules is for the Booleans.6.6. Example. The following
onstants are sele
ted in C .true; false ;not ;and ; ite (for if then else).The following Æ-rules are introdu
ed.not true ! false ;not false ! true;and true true ! true;and true false ! false ;and false true ! false ;and false false ! false ;ite true ! true (� �xy:x);ite false ! false (� �xy:x).It follows that ite true x y !! x;ite false x y !! y:

Extensions 43Now we introdu
e as Æ-rules some operations on the set of integersZ= f: : : ;�2;�1; 0; 1; 2; : : :g:6.7. Example. For ea
h n 2 Z a
onstant in C is sele
ted and given the namen. (We will express this as follows: for ea
h n 2 Z a
onstant n 2 C is
hosen.)Moreover the following
onstants in C are sele
ted:plus ;minus ; times ;divide ; equal ; error :Then we introdu
e the following Æ-rules (s
hemes). For m;n 2 Zplus nm ! n+m;minus nm ! n�m;times nm ! n �m;divide nm ! n�m; if m 6= 0;divide n0 ! error ;equal nn ! true;equal nm ! false; if n 6= m:We may add rules like plus n error ! error :Similar Æ-rules
an be introdu
ed for the set of reals.Again another set of Æ-rules is
on
erned with
hara
ters.6.8. Example. Let � be some linearly ordered alphabet. For ea
h symbols 2 � we
hoose a
onstant `s' 2 C . Moreover we
hoose two
onstants Æ� andÆ= in C and formulate the following Æ-rules.Æ�`s1'`s2' ! true; if s1 pre
edes s2 in the ordering of �;Æ�`s1'`s2' ! false ; otherwise.Æ=`s1'`s2' ! true; if s1 = s2;Æ=`s1'`s2' ! false ; otherwise.It is also possible to represent `multiple valued' fun
tions F by putting asÆ-rule Æn!m; provided that F (n) = m.Of
ourse the resulting �Æ-
al
ulus does not satisfy the Chur
h-Rosser theoremand
an be used to deal with non-deterministi

omputations. We will notpursue this possibility, however.We
an extend the type assignment system �! to deal with
onstants byadding typing axioms of the form C : �:

44 Introdu
tion to Lambda Cal
ulusFor the system with integers this would result in the following. Let Z;B 2 Bbe basi
 type
onstants (with intended interpretation Z and booleans, respe
-tively). Then one adds the following typing axioms to �!.true : B; false : B;not : B!B; and : B!B!B;n : Z; error : Z;plus : Z!Z!Z; minus : Z!Z!Z; times : Z!Z!Z; divide : Z!Z!Z;equal : Z!Z!B:6.9. Example. ` �xy:times x(plus xy) : Z!Z!Z; as is shown by the follow-ing derivation.times : Z!Z!Z x : Z (2)times x : Z!Z plus : Z!Z!Z x : Z (2)plus x : Z!Z y : Z (1)plus xy : Ztimes x(plus xy) : Z (1)�y:times x(plus xy) : Z!Z (2)�xy:times x(plus xy) : Z!Z!ZThe Strong Normalization property for (plain) �! implies that not all re-
ursive fun
tions are de�nable in the system. The same holds for the above�Æ-
al
ulus with integers. The following system of type assignment is su
hthat all
omputable fun
tions are representable by a typed term. Indeed, thesystem also assigns types to non-normalizing terms by introdu
ing a primitive�xedpoint
ombinator Y having type (�!�)!� for every �.6.10. Definition. (i) The �Y Æ-
al
ulus is an extension of the �Æ-
al
ulus inwhi
h there is a
onstant Y with redu
tion ruleY f ! f(Y f):(ii) Type assignment to �Y Æ-terms is de�ned by adding the axiomsY : (�!�)!�for ea
h � 2 T. The resulting system is denoted by �Y Æ!.Be
ause of the presen
e of Y , not all terms have a normal form. Withoutproof we state the following.6.11. Theorem. (i) The �Y Æ-
al
ulus satis�es the Chur
h-Rosser property.(ii) If a term in the �Y Æ-
al
ulus has a normal form, then it
an be foundusing leftmost redu
tion.(iii) The Subje
t Redu
tion property holds for �Y Æ!.

Extensions 456.12. Theorem. All
omputable fun
tions
an be represented in the �Y Æ-
al
ulus by a term typable in �Y Æ!.Proof. The
onstru
tion uses the primitive numerals n. If we take S+Y Æ ��x:plus x1, P�Y Æ � �x:minus x1, and ZeroY Æ � �x:equal x0, then the proofof Theorem 3.13
an be imitated using Y instead of the �xedpoint
ombinatorY. The types for the fun
tions de�ned using Y are natural. �One
ould also add Y to the system �2 using the (single) axiomY : 8�:(�!�)!�:Exer
ises6.1. Let kn be de�ned by k0 � I and kn+1 � K(kn). Show that on the kn there
ursive fun
tions
an be represented by terms in the �ÆC-
al
ulus.6.2. Write down a �Æ-term F in the system of Example 6.7 su
h thatFn!! n! + n:6.3. Write down a �Æ-term F in the system of Example 6.8 su
h that for s1; s2; t1; t2 2� we haveF [`s1'; `t1'℄[`s2'; `t2'℄ !! true; if (s1; t1) pre
edes (s2; t2) in thelexi
ographi
al ordering of ���;!! false; otherwise.6.4. Give suitable typing axioms (in �! and �2) for the
onstants in Example 6.6.

Chapter 7Redu
tion SystemsIn this
hapter we
onsider some alternative models of
omputation based onrewriting. The obje
ts in these models are terms built up from
onstants witharity in N and variables, using appli
ation.7.1. Definition. Let C be a set of
onstants. The set of terms over C (notationT = T (C)) is de�ned as follows.x 2 V) x 2 T ;C 2 C; t1 : : : ; tk 2 T) C(t1; : : : ; tn) 2 T ;where n = arity(C).Re
ursive programming s
hemesThe simplest redu
tion systems are re
ursive programming s
hemes (RPS).The general form of an RPS has as language the terms T (C). On these aredu
tion relation is de�ned as follows.C1(x1; : : : ; xn1) ! t1;...Ck(x1; : : : ; xnk) ! tk;where ni = arity(Ci). Here we have(1) The C's are all di�erent
onstants.(2) The free variables in ti are among the x1; : : : ; xni .(3) In the t's there may be arbitrary C's.For example, the systemC(x; y) ! D(C(x; x); y);D(x; y) ! C(x;D(x; y))is an RPS.The �-
al
ulus is powerful enough to `implement' all these RPS's. We
an�nd �-terms with the spe
i�ed redu
tion behaviour.47

48 Introdu
tion to Lambda Cal
ulus7.2. Theorem. Ea
h RPS
an be represented in �-
al
ulus. For example (seeabove), there are terms C and D su
h thatCxy !!� D(Cxx)y;Dxy !!� Cx(Dxy):Proof. By the redu
ing variant 4.27 of the Multiple Fixedpoint Theorem. �Without proof we mention the following.7.3. Theorem. Every RPS satis�es the Chur
h-Rosser theorem.Term rewrite systemsMore general than the RPS's are the so
alled term rewrite systems (TRS's),whi
h use pattern mat
hing in fun
tion de�nitions. A typi
al example isA(0; y) ! y;A(S(x); y) ! S(A(x; y)):Then, for example, A(S(0);S(S(0)))!! S(S(S(0))).The di�eren
e with RPS's is that in a TRS the arguments of a rewrite rulemay have some stru
ture. A
onstant in a TRS that does not have a
ontra
tionrule (i.e. no rewrite rule starts with that
onstant) is
alled a
onstru
tor . Theother
onstants are
alled fun
tions.Not all TRS's satisfy the Chur
h-Rosser property. Consider the systemA(x) ! B;A(B) ! C:Then A(B) redu
es both to B and to C. It is said that the two rules overlap.The following rule overlaps with itself:D(D(x))! E:Then D(D(D(D))) redu
es to E and to D(E).See Klop (1992) for a survey and referen
es on TRS's.Combinatory logi
 (CL) is a redu
tion system related to �-
al
ulus. Termsin CL
onsist of (appli
ations of)
onstants I , K, S and variables, withoutarity restri
tions. The
ontra
tion rules areIx ! x;Kxy ! x;Sxyz ! xz(yz):(Note that KI is a nf.) Then KII ! I , and SII(SII) has no normalform. This CL
an be represented as a TRS by
onsidering I ;K;S as (0-ary)
onstru
tors, together with a fun
tion Ap with arity 2, as follows.Ap(I ; x) ! x;Ap(Ap(K; x); y) ! x;Ap(Ap(Ap(S; x); y); z) ! Ap(Ap(x; z);Ap(y; z)):

Redu
tion Systems 49The CL-term SII(SII) is translated into
 � Ap(!;!) where! � Ap(Ap(S; I); I).The Normalization Theorem does not extend to TRS's. Consider the aboveTRS-version of CL, together with the rulesor(x; true) ! true;or(true; x) ! true;or(false; false) ! false:The expression or(A;B)
an, in general, not be normalized by
ontra
ting always the leftmost redex. Infa
t A and B have to be evaluated in parallel. Consider e.g. the termsor(
;Ap(I ; true))and or(Ap(I ; true);
):Therefore this system is
alled non-sequential .Combinatory redu
tion systemsEven more general than TRS's are the
ombinatory redu
tion systems (CRS)introdu
ed in Klop (1980). These are TRS's together with arbitrary variablebinding operations. We have in fa
t CRS���� ����� TRS���� ����RPSExer
ises7.1. (Toyama et al. (1989a), see also (1989b)) A TRS is
alled strongly normalizing(SN) if there is no term that has an in�nite redu
tion path. So (the TRS versionof) CL(S;K) is not SN, but CL(I ;K) (with the obvious redu
tion rules) is.De�ne the following two TRS's.R1: F (4; 5; 6; x) ! F (x; x; x; x);F (x; y; z; w) ! 7;

50 Introdu
tion to Lambda Cal
ulus1 2 3?����R	���� ����R	���� ?4 5 6����R ?	����7R2: G(x; x; y) ! x;G(x; y; x) ! x;G(y; x; x) ! x:Show that both R1 and R2 are SN, but the union R1 [R2 is not.

BibliographyAbramsky, S., D.M. Gabbay and T.S.E. Maibaum (eds.) (1992). Handbook ofLogi
 in Computer S
ien
e, Vol. II, Oxford University Press.van Bakel, S.J. (1992). Complete restri
tions of the interse
tion type dis
ipline,Theoreti
al Computer S
ien
e 102, pp. 135{163.Barendregt, H.P. (1976). A global representation of the re
ursive fun
tions inthe lambda
al
ulus, Theoreti
al Computer S
ien
e 3, pp. 225{242.Barendregt, H.P. (1984). The Lambda Cal
ulus: Its Syntax and Semanti
s,Studies in Logi
 103, se
ond, revised edition, North-Holland, Amsterdam.Barendregt, H.P. (1990). Fun
tional programming and lambda
al
ulus, in:J. van Leeuwen (ed.), Handbook of Theoreti
al Computer S
ien
e, Vol. II,Elsevier/MIT Press.Barendregt, H.P. (1992). Lambda
al
uli with types, in: Abramsky et al.(1992), pp. 117{309.de Bruijn, N.G. (1970). The mathemati
al language automath, its usage andsome of its extensions, in: M. Laudet, D. La
ombe and M. S
huetzenberger(eds.), Symposium on Automati
 Demonstration, INRIA, Versailles, Le
-ture Notes in Computer S
ien
e 125, Springer-Verlag, Berlin, pp. 29{61.Also in Nederpelt et al. (1994).de Bruijn, N.G. (1980). A survey of the automath proje
t, in: Hindley andSeldin (1980), pp. 580{606.Chur
h, A. (1936). An unsolvable problem of elementary number theory, Amer-i
an Journal of Mathemati
s 58, pp. 354{363.Chur
h, A. (1940). A formulation of the simple theory of types, Journal ofSymboli
 Logi
 5, pp. 56{68.Chur
h, A. (1941). The Theory of Lambda Conversion, Prin
eton UniversityPress.Curry, H.B. (1934). Fun
tionality in
ombinatory logi
, Pro
eedings of theNational A
ademy of S
ien
e USA 20, pp. 584{590.Curry, H.B. (1969). Modi�ed basi
 fun
tionality in
ombinatory logi
, Diale
ti
a23, pp. 83{92. 51

52 BibliographyCurry, H.B. and R. Feys (1958). Combinatory Logi
, Vol. I, North-Holland,Amsterdam.Curry, H.B., J.R. Hindley and J.P. Seldin (1972). Combinatory Logi
, Vol. II,North-Holland, Amsterdam.Girard, J.-Y. (1972). Interpr�etation fon
tionelle et �elimination des
oupuresdans l'arithm�etique d'ordre sup�erieur, Dissertation, Universit�e Paris VII.Hindley, J.R. (1969). The prin
ipal types
heme of an obje
t in
ombinatorylogi
, Transa
tions of the Ameri
an Mathemati
al So
iety 146, pp. 29{60.Hindley, J.R. and J.P. Seldin (eds.) (1980). To H.B. Curry: Essays on Com-binatory Logi
, Lambda-Cal
ulus and Formalism, A
ademi
 Press, NewYork.Howard, W.A. (1980). The formulae-as-types notion of
onstru
tion, in: Hind-ley and Seldin (1980), pp. 479{490.Kleene, S.C. (1936). �-de�nability and re
ursiveness, Duke Mathemati
al Jour-nal 2, pp. 340{353.Klop, J.W. (1980). Combinatory Redu
tion Systems, Dissertation, Utre
ht Uni-versity. CWI Tra
t, Amsterdam.Klop, J.W. (1992). Term rewrite systems, in: Abramsky et al. (1992).L�au
hli, H. (1970). An abstra
t notion of realizability for whi
h intuitionisti
predi
ate logi
 is
omplete, in: G. Myhill, A. Kino and R. Vesley (eds.),Intuitionism and Proof Theory: Pro
eedings of the Summer S
hool Con-feren
e, Bu�alo, New York, North-Holland, Amsterdam, pp. 227{234.Milner, R. (1978). A theory of type polymorphism in programming, Journal ofComputer and Systems Analysis 17, pp. 348{375.Milner, R. (1984). A proposal for standard ML, Pro
eedings of the ACM Sym-posium on LISP and Fun
tional Programming, Austin, pp. 184{197.Nederpelt, R.P., J.H. Geuvers and R.C. de Vrijer (eds.) (1994). Sele
ted Paperson Automath, Studies in Logi
 133, North-Holland, Amsterdam.Prawitz, D. (1965). Natural Dedu
tion: A Proof-Theoreti
al Study, Almqvistand Wiksell, Sto
kholm.Reynolds, J.C. (1974). Towards a theory of type stru
ture, Colloque sur laD�emonstration, Paris, Le
ture Notes in Computer S
ien
e 19, Springer-Verlag, Berlin, pp. 408{425.S
h�on�nkel, M. (1924). �Uber die Bausteinen der mathematis
he Logik, Math-ematis
he Annalen 92, pp. 305{316.

Bibliography 53S
hwi
htenberg, H. (1977). Proof theory: appli
ations of
ut-elimination, in:J. Barwise (ed.), Handbook of Mathemati
al Logi
, North-Holland, Amster-dam, pp. 867{895.Toyama, Y., J.W. Klop and H.P. Barendregt (1989a). Termination for the dire
tsum of left-linear term rewriting systems, Pro
eedings of the 3rd Interna-tional Conferen
e on Rewriting Te
hniques and Appli
ations, Chapel Hill,Le
ture Notes in Computer S
ien
e 355, Springer-Verlag, Berlin, pp. 477{491.Toyama, Y., J.W. Klop and H.P. Barendregt (1989b). Termination for the di-re
t sum of left-linear term rewriting systems, Te
hni
al Report CS-R8923,Centre for Mathemati
s and Computer S
ien
e (CWI), Amsterdam.Turing, A.M. (1936/7). On
omputable numbers, with an appli
ation to theEnts
heidungsproblem, Pro
eedings of the London Mathemati
al So
iety42, pp. 230{265.Turing, A.M. (1937). Computability and �-de�nability, Journal of Symboli
Logi
 2, pp. 153{163.Wells, J.B. (1994). Typability and type-
he
king in the se
ond-order �-
al
ulusare equivalent and unde
idable, Pro
eedings of the 9th Annual Symposiumon Logi
 in Computer S
ien
e, Paris, Fran
e, IEEE Computer So
ietyPress, pp. 176{185.

